共查询到20条相似文献,搜索用时 161 毫秒
1.
Ion microprobe zircon ages, a Nd model age and RbSr whole-rock dates are reported from the high-grade gneiss terrain at Sabaloka on the River Nile north of Khartoum, formally considered to be part of the Archaean/early Proterozoic Nile craton. The granulites, which are of both sedimentary and igneous derivation, occur as remnants in migmatites. Detrital zircon ages range from ≈ 1000 to ≈ 2650 Ma and prove the existence of Archaean to late Proterozoic continental crust in the sedimentary source region. The Nd model age for one sedimentary granulite is between 1.26 ( TCHUR) and 1.70 ( TDM) Ga and provides a mean crustal residence age for the sedimentary precursor. Igneous zircons in enderbitic gneiss crystallized at 719 ± 81 Ma ago, an age that also corresponds to severe Pb loss in the detrital zircons and which probably reflects the granulite event at Sabaloka. The RbSr data indicate isotopic homogenization at about 700 Ma ago in the granulites and severe post-granulite disturbance at ≈ 570 Ma in the migmatites. We associate this disturbance with hydration, retrograde metamorphism and anatexis that produced undeformed granites ≈ 540 Ma ago. The ≈ 700 Ma granulite event at Sabaloka suggests that this part of the Sudan belongs to the Pan-African Mozambique belt while the ancient Nile craton lay farther west. The gneisses studied here may represent the infrastructure of the ancient African continental margin onto which the juvenile arc assemblage of the Arabian-Nubian shield was accreted during intense horizontal shortening and crustal interstacking of a major collision event. 相似文献
2.
Abstract Coesite-bearing eclogites exposed in the Alpine, Qinling-Dabie (China), Caledonian, and Ural orogenic belts provide insight into the time-dependent thermal structure of continent collision belts. Coesite-bearing eclogites record peak metamorphic temperatures of 550-900°C at pressures ≥ 2.5 GPa reflecting anomalously cool conditions at depths of 90 km or more. The low temperatures recorded by coesite-bearing eclogites strongly suggest formation in a convergent plate margin where the downward advection of cool lithosphere depresses isotherms on a regional scale. Subduction zone pressure-temperature (P-T) paths calculated using a two-dimensional finite-difference model predict steady-state temperatures of 450-650°C at 100 km depth at the slab-mantle interface for convergence rates of 10 to 100 mm/yr. Coesite-bearing eclogites record peak temperatures ~100-250°C higher, possibly reflecting (i) formation during the early stages of convergence prior to the achievement of thermal steady state; (ii) attainment of peak metamorphic temperatures during decompression (exhumation); (iii) formation during slow, <10 mm/yr, convergence; or (iv) uncertainties in the modeling parameters. Retrograde P-T paths determined for coesite-bearing eclogites from the western Alps and China indicate cooling during decompression from depths of ~100 km. Cooling of eclogite terrains during exhumation requires loss of heat downward into lithosphere that continues to subduct beneath the eclogites, loss of heat upward into the cooler hanging wall of a large-scale normal fault/shear zone, or a combination of the two scenarios. 相似文献
3.
利用库仑临界锥角理论和沙箱物理模拟进行褶皱冲断带的研究时,通常忽略了楔形体介质的内聚力.岩石力学实验结果表明,岩石内聚力通常在几到几十兆帕范围内变化.楔形体介质强度的变化是否会影响褶皱冲断带的时空演化?针对这一问题,我们建立了岩石内聚力分别是10 MPa、20 MPa和50 MPa的3个二维弹塑性有限元模型,模型包含了楔形体介质的弹塑性材料非线性和底部滑脱带的接触非线性.该模型考虑了不同介质强度、底部滑脱带摩擦、重力和边界构造加载的影响,更为符合实际.计算结果表明,岩石内聚力为10 MPa时,楔形体内的断坡首先在楔形体近端产生,从近端依次向远端发展;岩石内聚力是20 MPa时,断坡开始在楔形体近端产生,随后在远端也开始形成,最后由两端向中间汇聚;岩石内聚力是50 MPa时,断坡先从楔形体远端形成,从远端向近端依次发展.我们还讨论了底部滑脱层倾角对褶皱冲断带演化的影响,结果表明较低的底部滑脱面倾角易产生由近端向远端演化的样式,中等滑脱面倾角易产生两端向中间演化的样式,较高滑脱面倾角易产生由远端向近端演化的样式.我们得到了三种不同的褶皱冲断带时空演化的模式,其结果可以用来解释青藏高原东北缘依次向北东方向发展的海原-六盘山断层、天景山断层、烟筒山断层系统的时空演化. 相似文献
4.
The relationship between temporal-spatial evolution of gravity and earthquake activity during 1992–2001 has been analyzed
systematically by integrally adjusting the gravity observation data of the northeastern edge of Qinghai-Xizang (Qingzang)
block. The result shows that the gravity observation data of the northeastern edge of Qingzang block obtained by using the
uniform starting datum can completely reflect the precursory gravity information appearing during the seismogenic process.
In the genesis stage of an earthquake, regional gravity anomaly appears in a large area, resulting in related local gravity
anomaly. The dynamic image of gravity field can clearly reflect the orderly evolution and earthquake activity.
Foundation item: Key Project of China Earthquake Administration during the tenth Five-year Plan (100501-05-05). 相似文献
5.
Introduction Earthquake is closely tied up with gravity on the basis of crustal deformation and crustaldensity change. With the accumulation of stress around the epicenter, the spatial position ofground point and density crustal medium will change with strain during the seismogenic processof an earthquake. All these factors will bring about the change of gravity field. Since the Xingtaiearthquake in China in 1966, mobile gravity measurements in a large scale and the studies ongravity var… 相似文献
6.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km 2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m 3 s ?1) and by an hourly bedload rate not exceeding 20 m 3 h ?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m 3 s ?1 and average hourly bedload rate of 324 m 3 h ?1. Step–pool features were characterized primarily by a steepness parameter c = ( H/ Ls)/ S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
7.
Geophysical results from the continental margin south of South Africa are consistent with a fault-controlled origin for the steep, linear continental slope. Accepting that the faulting was most probably of the shear type, caused by the transcurrent motion of the Falkland Plateau past South Africa, a model for the evolution of the sea floor adjacent to the margin is proposed. In this model the Agulhas Plateau is considered to be an oceanic feature, possibly an abandoned sea-floor spreading centre. 相似文献
8.
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200–360 Ma. This indicates that the Paleogene alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380–450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northern Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation. 相似文献
9.
Abstract In the Triassic suture between the Sino-Korean and Yangtze cratons, the Dabie metamorphic Complex in central China includes three tectonic units: the northern Dabie migmatitic terrane, the central ultrahigh-P coesite- and diamond-bearing eclogite belt, and the southern high-P blueschist-eclogite belt. This complex is bounded to the north by a north-dipping normal fault with a Paleozoic accretionary complex and to the south by a north-dipping reverse fault with Yangtze basement plus its foreland fold-and-thrust sequence. Great differences in metamorphic pressure suggests that these units reached different depths during metamorphism and their juxtaposition occurred by wedge extrusion of subducted old continental fragments. These units were subsequently subjected to (i) Barrovian type regional metamorphism and deformation at shallow depths; (ii) intrusion of Cretaceous granitic plutons; and (iii) doming and segmentation into several blocks by normal and strike-slip faults. A new speculative model of tectonic exhumation of UHP rocks is proposed. 相似文献
10.
青藏高原东北缘隆升机制和过程一直以来备受争议,本文为了进一步限定北祁连山及其北缘地区山体的隆升历史,在旱峡、白杨河和红山以及酒泉盆地以北的黑山和金塔南山进行了磷灰石和锆石裂变径迹分析.测试结果表明,研究区基岩样品的磷灰石裂变径迹年龄分布在晚白垩世—上新世(82~4.2 Ma),径迹长度介于9.6~13.6 μm;锆石裂变径迹年龄分布范围为106.3~480.5 Ma,多数介于106~195 Ma.结合镜质体反射率,热史模拟曲线揭示了中新生代三期主要的冷却降温事件:早白垩世期间(140~100 Ma)、始新世期间(55~30 Ma)、中新世(10~8 Ma)以来.早白垩世期间的隆升剥露冷却过程可能由于拉萨地块的北向拼贴碰撞引起;始新世期间的隆升剥露冷却事件可能是印度与欧亚板块碰撞远程快速响应的结果;中新世以来的隆升剥露冷却过程与北祁连山逆冲断层的构造活动有关. 相似文献
11.
In the Indian Ocean, the problem of where to put the island of Madagascar in any continental reconstruction has been particularly enigmatic. Much independent geophysical work has recently been carried out in this area, and it is timely to collate and review the existing data. New ideas concerning the interpretation of the regional gravity field of southeastern Africa are presented, which, together with the other data indicate that Madagascar has probably always been in its present position relative to the African mainland. 相似文献
12.
Thermal evolution of the continental crust beneath the northeastern Siberian craton was studied based on the interpretation
of apatite fission-track ages. The samples selected for AFT dating were collected from depths between 2 and 3 km along a 1000-km-long
profile, from the crystalline basement of the Siberian platform. The AFT ages range from 185 to 222 Ma, indicating that in
the late Triassic-early Cretaceous, the top of the crystalline basement was cooled below ∼100°C. Once the apatite cooled below
this temperature, it began to accumulate and preserve tracks produced by spontaneous fissioning of 238U, and the number of tracks preserved is effective in determining the ages of events using the apatite fission-track method
(AFT).
The study showed that the apatite from Archean rocks was largely formed at 1.8–1.9 Ga as a result of a Paleoproterozoic metamorphic
overprinting during the terrane collision and the subsequent accretion of the Siberian craton. The last thermal event, the
self-heating of the collision prism, was terminated by cooling at ∼1.3 Ga. At that time, the Rb-Sr isotopic system became
closed and the upper crust passed the ~300°C isograd. The calculation results showed that on further cooling, the ∼100°C isograd
was passed at 1143 Ma. This age estimate could be obtained using AFT dating if the above event had been the last one in the
thermal history of the Siberian craton. The obtained track ages indicate the existence of a repeated, significantly younger,
heating of the crystalline crust due to some local reason. 相似文献
13.
Abstract An overview of the regional metamorphic belts of Japan is given in the context of the tectonic evolution of the Japanese Islands. The Japanese Islands were situated on an active margin of the Eurasian continent or its constituent landmass before their assembly during the Phanerozoic. The Japanese Islands are composed mainly of metamorphosed and unmetamorphosed accretionary complexes, granitoids and their effusive equivalents that were formed by the Cordilleran-type orogeny. The metamorphic belts are regarded essentially as a deep-seated portion of an accretionary complex. In spite of continuous subduction of oceanic plates beneath the continents, these orogenic rocks were formed quite episodically, as evidenced by discontinuous matrix ages of the accretionary complexes and a striking concentration of isotopic ages of the granitoids. A systematic along-arc age shift of Cretaceous large-scaled granitic magmatism and regional metamorphism suggests a tectonic control such as ridge subduction, which triggered the episodic orogeny. A tectonic model based on the paired metamorphic belts, combined with the non-steady tectonic control, works well to explain this magmatism and metamorphism in a single arc-trench system as a continental margin process. However, the juxtapositional process of the paired metamorphic belts is still a problem. Two possible cases, namely transcurrent displacement and back-arc overthrusting are discussed. 相似文献
14.
Petrological modeling is a powerful technique to address different types of geological problems via phase-equilibria predictions at different pressure–temperature-composition conditions. Here, we show the versatility of this technique by (1) performing thermobarometrical calculations using phase equilibrium diagrams to explore the petrological evolution of high-pressure (HP) metabasites from the Renge and Sanbagawa belts, Japan and (2) forward-modeling the mineral–melt evolution of the subducted fresh and altered oceanic crust along the Nankai subduction zone geotherm at the Kii peninsula, Japan. In the first case, we selected three representative samples from these metamorphic belts: a glaucophane eclogite and a garnet glaucophane schist from the Renge belt (Omi area) and a quartz eclogite from the Sanbagawa belt (Besshi area). We calculated the peak metamorphic conditions at ~2.0–2.3 GPa and ~550–630 °C for the HP metabasites from the Renge belt, whereas for the quartz eclogite, the peak equilibrium conditions were calculated at 2.5–2.8 GPa and ~640–750 °C. According to our models, the quartz eclogite experienced partial melting after peak metamorphism. In terms of the petrological evolution of the subducted uppermost portion of the oceanic crust along the warm Nankai geotherm, our models show that fluid release occurs at ~20–60 km, likely promoting high pore-fluid pressure, and thus, seismicity at these depths; dehydration is controlled by chlorite breakdown. Our petrological models predict partial melting at >60 km, mainly driven by phengite and amphibole breakdown. According to our models, the melt proportion is relatively small, suggesting that slab anatexis is not an efficient mechanism for generating voluminous magmatism at these conditions. Modeled melt compositions correspond to high-SiO 2 adakites; these are similar to compositions found in the Daisen and Sambe volcanoes, in southwest Japan, suggesting that the modeled melts may serve as an analog to explain adakite petrogenesis. 相似文献
15.
This review covers electromagnetic studies in geothermal and volcanic regions presented in the literature since 1983. It has been arranged by geographical areas, emphasizing where possible the data gathering, the interpretation techniques and the results of each study. The main conclusions of this review are: In all the surveys, people are measuring the complete MT impedance tensor. However, in general, this information is not being used in the interpretation mainly because of the poor quality of the data. This unfortunate situation originates by the presence of strong noise in the surveyed area and generally, by the lack of use of the remote reference technique. Crews with equipment and techniques that can gather data of very good quality, generally perform very detailed interpretations using most of the gathered information. Other groups that collect noisy data oversimplify the interpretation by using only one mode or averaging the resistivity of both modes and interpreting the results using simplified 1-D interpretations. At the interpretation stage, most of the mid-crustal conductors identified are being associated to the presence of trapped water of magmatic origin. In general, magma chambers are not being detected, probably because either they are absent or because there is a lack or resolution of the electromagnetic methods to detect them. 相似文献
16.
The subsurface information gathered during exploration for oil and gas in the Cambay basin shows it as a deep graben with 5 km or more of Tertiary and Quaternary sediments resting on the Deccan Trap floor. The Trap floor of this graben extends from Lat. 24° N to about Lat. 19° N and possibly further south. The basin is divisible into separate morphotectonic blocks as a result of block differentiation in the Trap basement, reflected in the structural attitudes of the overlying sediments. This differentiation is believed to have originated in the Paleocene. The dominant structural grain of the area to south of the Narmada river is ENE-WSW with block faulting in the Traps along the older Satpura trend. North of the Narmada river, the trend is longitudinal upto the Meshwa river while further north the trends veer to a NNW-SSE alignment. These latter trends, in the greater part of the Cambay basin, were impressed early during its subsidence and are the result of reactivation along the old Dharwarian trends in post-Delhi times. Maximum thickness of the Traps penetrated so far is near Mechsana and Cambay where more than 1000 meters thickness has been drilled through. The drilling and gravity-magnetic evidence shows the thickness of Deccan Traps in this trough to be of the order of 2.5 km and points to the possibility of active subsidence of Cambay basin, concomitant with the outpouring of the basaltic lavas. The age of the Traps in the Cambay basin, as evidenced by the available data, is Upper Crealaceous. The influence of the structural grain of the basaltic floor on the overlying sedimentary sequence is evidenced during all the stages in the evolution of the Cambay Tertiary basin. Conglomerates, wackes and reddish brown clays of exclusive Trap derivation predominate in the sedimentary section in the initial stage of the basin evolution during Paleocene. General absence of well developed terrigenous reservoirs on a regional scale in the Paleogene section is due to predominance of Trap terrain as the provenance of clastic detritus, contributing essentially argillaceous matter. 相似文献
17.
Suturing of the supercontinent Rodinia in the Grenville event (˜ 1000 Ma) was followed by rifting in the late Proterozoic (˜ 800-700 Ma), reorganization to Gondwana in the Pan-African (˜ 700-500 Ma) and further accretion to develop Pangea at the end of the Paleozoic. One of the Rodinian rifts followed part of the Grenville suture, it produced the margin of eastern North America and southern Baltica and the contrasting margin of west Gondwana in present South America. The Paleozoic accretionary wedge against the Grenville-age margin of North America and Baltica contains Avalonian/Cadomian terranes that exhibit Pan-African erogenic events ± sediments apparently developed while the terranes were in or near Gondwana. These terranes carry lower-Paleozoic fauna (Acado-Baltic) that are not indigenous to North America and Baltica.U---Pb zircon ages range from 1500-1000 Ma in Grenville terranes and from 800–500 Ma with minor inheritance in Avalonian terranes; they are generally much older in Cadomian terranes, implying very little resetting during Pan-African events. T DM ages are generally 2000–1200 Ma in Grenville terranes, 1300–600 Ma in Avalonian terranes and 2000–1200 in Cadomian terranes. These summary data show that: (1) the Grenville orogenic event produced almost no juvenile crust; (2) the Avalonian terranes of North America contain crust that evolved primarily in the late Proterozoic, possibly as a mixture of juvenile Pan-African material and Grenville or slightly older material; (3) the Cadomian terranes of Europe consist of old (middle-Proterozoic to Archean) crust with minor juvenile Pan-African material. The Avalonian terranes apparently evolved near, and partly on, the Grenville-age crust now in South America during the intense orogeny associated with rotation of Gondwana away from North America. The Cadomian terranes of Europe, however, appear to be fragments of other parts of Gondwana, probably West Africa. 相似文献
18.
Many geologists focus on the foreland structures, co-relationship between shallow and deep structures and their dynamics between intra-continent orogenies and foreland basin in recent years[1―17]. The intra-plate collision and deformed area of West Kunlun-Pamirand Southern Tianshan become the natural lab of this studies and there are many new developments con-cerned with the geometry and kinemics of foreland thrusting, back-thrusting and triangle zones[3―14]. Many types of foreland thrusti… 相似文献
19.
Morphologic and geologic observations suggest that subduction of bathymetric highs, such as aseismic ridges, chains of seamounts, and fracture zones, are important in the development of many forearc features and that those features form during relatively brief episodes of intense tectonism. A bathymetric high obliquely entering a subduction zone tends to compress sediments along its leading edge, resulting in arcward compression of the accretionary wedge. A landward deflection of the trench axis and a steepened inner wall result from this deformation. If a significant component of oblique slip occurs along the subduction zone, then along-strike movement of the accretionary wedge may also occur. Stresses resulting from subduction of bathymetric features with sufficient buoyancy or high relief extend farther landward than in the case of smaller, less buoyant features, inducing uplift of the leading edge of the overriding plate. Tectonic erosion of the base of the overriding plate and along-strike transport of are material may also occur. The accelerated tectonism observed along several convergent margins can be attributed to the consumption of bathymetric irregularities on the seafloor rather than temporally abrupt changes in rates and directions of plate motions or other episodic events in the accretionary prism. 相似文献
|