首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high pressure spinel polymorph of Ni2SiO4 persists metastably at 713°C and atmospheric pressure. The enthalpy of the olivine-spinel transition was obtained by measuring the heats of solution of both polymorphs in a molten oxide solvent, 2PbO · B2O3, at that temperature. For Ni2SiO4(ol)→Ni2SiO4, ΔH9860 = +1.4 ± 0.7kcal/mol. The heat content increments, H986 ? H297, were found to be: olivine, 25.73 ± 0.42kcal/mol, and spinel, 25.39 ± 0.20kcal/mol. The measured enthalpy of the transformation is consistent with the low slope of the phase boundary, ?P/?T = ~ 12b/deg, observed by Akimoto and others. The entropy of the olivine-spinel transition in Ni2SiO4 is accordingly about a factor of three smaller in magnitude (ΔS = ~ ?1cal/deg mol) than that for Co2SiO4,Fe2SiO4,Mg2SiO4or Mg2GeO4 (ΔS = ?3to?3.5cal/deg mol).  相似文献   

2.
Magnesium orthosilicate with spinel structure (γ-Mg2SiO4) was synthesized at about 250 kbar and 1000°C. Unit cell dimension was established to be 8.076 ± 0.001Å. X-ray powder diffraction pattern revealed a significant difference between γ-Mg2SiO4 and other γ-M2SiO4 spinels (M = Fe, Co, and Ni) in the intensities of (111) and (331) reflections, both of which are virtually absent in the Mg2SiO4 spinel. This feature could be thoroughly understood by the calculation of the intensities for several silicate spinels.  相似文献   

3.
The compressional behavior of the MgCr_2O_4 spinel has been investigated with the CASTEP code using density functional theory and planewave pseudopotential technique. We treated the exchange-correlation interaction by both the local density approximation(LDA) and generalized gradient approximation(GGA) with the Perdew-Burker-Ernzerhof functional. Our simulation was conducted for the pressure range of 0–19 GPa. We obtained the isothermal bulk modulus(K_T) of the MgCr_2O_4 spinel as 181.46(48) GPa(GGA; low boundary) or 216.1(11) GPa(LDA; high boundary), with its first derivative(K'_T) as 4.41(6) or 4.5(1), respectively. The oxygen parameter u is not constant but negatively correlated with P, and decreases by about 0.5–0.6% for the investigated P range. The component polyhedra have different compressibilities, increasing in the order of(O_4)_1CrO_6(O_4)_2O_6MgO_4. The Mg-O bond in the MgO_4 tetrahedron is much more compressible than the Cr-O bond in the CrO_6 octahedron.  相似文献   

4.
Experimental study of the phase boundary for the disproportionation of the inverse spinel Mg2SnO4 into its isochemical mixed oxides indicates a slope dP/dT = 40 ± 10bars/°K. This positive slope is consistent with the large entropies of inverse (relative to normal) spinels predicted from high-temperature entropy-molar volume systematics. Thermodynamic data do not support the existence of a distinctly negative slope for the proposed disproportionation of Mg2SiO4 normal spinel. Evidence from X-ray and phase equilibria studies suggests the possibility that Si4+, Mg2+, and Fe2+ share the octahedral sites in silicate spinels under mantle conditions. The consequences of this partial inverse character are a positive slope for the postulated spinel-mixed oxide phase boundary near 650 km depth, removal of a widely accepted constraint on mantle-wide convection, and anomalous elasticity-density behaviour within the transition zone.  相似文献   

5.
Two synthetic pyroxenes (FeSiO3, MgSiO3) and five natural pyroxenes with compositions of about Fs80En20, Fs60En40, Fs50En50, Fs40En60, and Fs20En80 have been subjected to pressures up to250 ± 50kbars at a temperature of about1500 ± 200°C in a diamond anvil cell heated by an infrared laser beam. After quenching and unloading X-ray data analysis indicates that (1) those with Mg less than 50% undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure, and (2) those with Mg higher than 60%, undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)SiO3 (hexagonal phase) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure.  相似文献   

6.
The enthalpies of formation from the oxides of Mg2SnO4 and Co2SnO4 were found by oxide melt solution calorimetry to be +1.13 ± 0.48 kcal/mol and ?2.31 ± 0.28 kcal/mol, respectively. Using these data, the slopes, ?P/?T, for disproportionation of these spinels to the component oxides at high pressure were calculated to be +30.4 ± 4.2 bar/K for Mg2SnO4 and ?10.3 ± 2.4 bar/K for Co2SnO4, in general agreement with the data of Jackson et al. (1974a,b). Using thermochemical data for the formation of olivines, for olivine-spinel transitions and for the transformation of quartz to stishovite, we calculate pressures for the disproportionation of silicate spinels to be in the range 150–200 kbar. Calculated slopes ?P/?T for the disproportionation reactions are ?10.7, ?24.9, ?11.2, and +7.6 bar/K for Mg2SiO4, Fe2SiO4, Co2SiO4, and Ni2SiO4. The large negative slope calculated for Fe2SiO4 results from a surprisingly large positive slope reported for the olivine-spinel transition in that compound (Akimoto et al., 1969). Further consideration of the systematic trends in the thermodynamics of spinel formation from the oxides suggests that the silicate spinels should have entropies of formation close to zero, resulting in values of ?P/?T which are zero or at most only slightly negative. This confirms the conclusion of Jackson, Liebermann, and Ringwood that values of ?P/?T for spinel disproportionation are unlikely to be more negative than ?10 bar/K and may well be slightly positive. Reaction of spinels to form other post-spinel phases, particularly ilmenite and perovskite, are discussed in terms of available thermochemical data.  相似文献   

7.
Samples from the surface of lava flows discharged by the 2012–2013 Tolbachik Fissure Eruption were found to contain oxysulfates of copper, sodium, and potassium: K2Cu3O(SO4)2 (fedotovite), NaKCu2O(SO4)2, and Na3K5Cu8O4(SO4)8. The last two phases have no naturally occurring or synthetic analogues that we are aware of. They form flattened crystals of prismatic to long-prismatic habits. The crystals of Na3K5Cu8O4(SO4)8 have a chemical composition corresponding to the empirical formula Na2.22K5.47Cu8.02S8.05O36. An X-ray analysis of this compound showed that it has a monoclinic symmetry, P2/c, a = 13.909(4), b = 4.977(1), c = 23.525(6) Å, β = 90.021(5)°, V = 1628.3(7) Å3. The crystal structure was determined by direct techniques and refined to yield R 1 for 3955 reflexes//web// with F 2 > 4σF. The compound NaKCu2O(SO4)2 also belongs to the monoclinic system, P2/c, a = 14.111(4), b = 4.946(1), c = 23.673(6) Å, β = 92.052(6)°, V = 1651.1(8) Å3. The structure was determined by direct techniques to yield a tentative structural model that has been refined up to R 1 = 0.135 for 4088 reflexes with F 2 > 4σF. The crystal structure of Na3K5Cu8O4(SO4)8 is based on chains of [O2Cu4]4+ consisting of rib-coupled oxy-centered tetrahedrons of (OCu4)6+. The chains are surrounded by sulfate radicals, resulting in columns of {[O2Cu4](SO4)4}4? aligned along the b axis. The interchain space contains completely ordered positions of Na+ and K+ cations. The principle underlying the connection of NaKCu2O(SO4)2 columns in the crystal structure of {[O2Cu4](SO4)4}4? is different, in view of the relation Na:K = 1 as contrasted with 3:5 for the compound Na3K5Cu8O4(SO4)8. The presence of oxy-centered tetrahedrons in the structure of these new compounds furnishes an indirect hint at the importance of polynuclear copper-oxygen radicals with centering oxygen atoms as forms of transport of copper by volcanic gases.  相似文献   

8.
Co2SiO4 spinel has been found to disproportionate into its isochemically mixed oxides with rocksalt and rutile structures at pressures between 170 and 190 kbar and temperatures between 1400 and 1800°C in a diamond-anvil press. The exact disproportionation pressure is not certain due to transient increases in pressure during the local and rapid heating by a continuous YAG laser. The slope of the phase boundary between the spinel phase and the mixed oxides is calculated to be?33 ± 20bar/deg. This negative slope is consistent with the observed anomalously large entropy of CoO (relative to its isostructural oxides) in entropy vs.(MV)?1/2 systematics, whereM is the formula weight andV the molar volume. The sign of the slope for a phase boundary in the disproportionation of spinel depends on the values of entropy of the rocksalt oxides as well as the inverse character exhibited in the spinel phases. The normal entropy of MgO suggests that the phase boundary for the disproportionation of Mg2SiO4 spinel has positive slope.  相似文献   

9.
In a diamond-anvil press coupled with YAG laser heating, the spinels of Co2GeO4 and Ni2GeO4 have been found to disproportionate into their isochemical oxide mixtures at about 250 kbar and 1400–1800°C in the same manner as their silicate analogues. At about the same P-T conditions MnGeO3 transforms to the orthorhombic perovskite structure (space group Pbnm); the lattice parameters at room temperature and 1 bar are a0 = 5.084 ± 0.002, b0 = 5.214 ± 0.002, and c0 = 7.323 ± 0.003Å with Z = 4 for the perovskite phase. The zero-pressure volume change associated with the ilmenite-perovskite phase transition in MnGeO3 is ?6.6%. Mn2GeO4 disproportionates into a mixture of the perovskite phase of MnGeO3 plus the rocksalt phase of MnO at P = 250kbar and T = 1400–1800°C. The concept of utilizing germanates as high-pressure models for silicates is valid in general. The results of this study support the previous conclusion that the lower mantle comprises predominantly the orthorhombic perovskite phase of ferromagnesian silicate.  相似文献   

10.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

11.
The crystal structure of fassaite from the Angra dos Reis meteorite has been determined by least-squares refinement of three-dimensional X-ray data to anR value of 3.3%. The pyroxene is monoclinic, space groupC2/c, with unit-cell dimensionsa = 9.738(1),b = 8.874(2),c = 5.2827(5)Å, β = 105.89(1)°, andV = 439.1(1)Å3. Average bond lengths are (Si,Al)-O = 1.651, M1-O = 2.061, and M2-O = 2.489Å. The distribution of iron and magnesium between M1 and M2 suggests a temperature of equilibration greater than 1000°C.Electron microprobe analysis of several fassaite grains reveals small but statistically significant variations of (Mg + Si) versus (Al - Ti). The range of fassaite composition may be represented byEn3Hd22TiCpx6(Di53±2CaTs16?2) whereEn=Mg2Si2O6,Hd=CaFeSi2O6,TiCpx=CaTiAl2O6,Di=CaMgSi2O6,CaTs=CaAl2SiO6. Most fassaite analyses calculated on the basis of four cations yielded greater than six anions, suggesting that part of the titanium or chromium might be reduced to Ti3+ or Cr2+.  相似文献   

12.
The fO2 stability relations of ilmenite and ulvöspinel were determined using C-O H-N gas-flow apparatus with fO2 measured by a solid ceramic (calcia-zirconia) oxygen electrolyte cell. For Fe+TiO2 + 1/2 O2 =FeTiO3 (from 850°–1050°C), 1/2 log fO2=(−11,250/T) + 0.98 and for Fe+FeTiO3 + 1/2 O2 =Fe2TiO4 (from 850°–1210°C), 1/2 logfO2 = (−12,170/T) + 1.93. These curves lie at significantly higher values of ?O2 than determined by previous investigators (i.e., 3/4 and1/4 order of magnitude for ilmenite and ulvöspinel, respectively). In addition, for Fe+ 2TiO2 + 1/2 O2 =FeTi2O5 (1210°C), ΔGr0=−45.8 ± 0.6 kcal. The QFI curve crosses the ulvöspinel reduction curve at ∼950°C and is at lower values of fO2 below this temperature. The occurrences of fayalite reduction to SiO2 + Fe in lunar rock 14053, as well as a new finding of this assemblage in 14072, are evidence for extreme sub-solidus reduction, whereas ulvöspinel breakdown alone occurs under less reducing conditions. The ‘complete’ reduction of ulvöspinel to TiO2 + Fe occurs in 2 steps: first, to ilmenite + Fe and then, however more slowly, to rutile + Fe. Thus, the presence of ulvöspinel but lack of ilmenite reduction in lunar rocks cannot be used as evidence that the fO2 was between the associated curves — only upper limits of fO2 can be inferred.  相似文献   

13.
FAMOUS basalt 527-1-1 (a high-Mg oceanic pillow basalt) has three generations of spinel which can be distinguished petrographically and chemically. The first generation (Group I) have reaction coronas and are high in Al2O3. The second generation (Group II) have no reaction coronas and are high in Cr2O3 and the third generation (Group III) are small, late-stage spinels with intermediate Al2O3 and Cr2O3. Experimental synthesis of spinels from fused rock powder of this basalt was carried out at temperatures of 1175–1270°C and oxygen fugacities of 10?5.5 to 10?10 atm at 1 atm pressure. Spinel is the liquidus phase at oxygen fugacities of 10?8.5 atm and higher but it does not crystallize at any temperature at oxygen fugacities less than 10?9.5. The composition of our spinels synthesized at 1230–1250°C and 10?9 atmfO2 are most similar to the high-Cr spinels (Group II) found in the rock. Spinels synthesized at 1200°C and 10?8.5 atmO2 are chemically similar to the Group III spinels in 527-1-1. We did not synthesize spinel at any temperature or oxygen fugacity that are similar to the high-Al (Group I) spinel found in 527-1-1. These results indicate that the high-Cr (Group II) spinel is the liquidus phase in 527-1-1 at low pressure and Group III spinel crystallize below the liquidus (~1200°C) after eruption of the basalt on the sea floor. The high-Al spinel (Group I) could have crystallized at high pressure or from a magma enriched in Al and perhaps Mg compared to 527-1-1.  相似文献   

14.
Samples of Ni2SiO4 in both olivine and spinel phases have been compressed to pressures above 140 kbar in a diamond-anvil cell and heated to temperatures of 1400–1800°C using a continuous YAG laser. After quenching and releasing pressure, X-ray diffraction examination indicates that the samples disproportionate to a mixture of stishovite (SiO2) and bunsenite (NiO) at pressures between 140 and 190 kbar. The exact disproportionation pressure is not certain due to transient increases in pressure during the local and rapid heating. However, thermodynamic calculations suggest that the transition pressure is about 192 ± 4 kbar at 1545°C and that the equation of the spinel-mixed oxides phase boundary isP(kbar) = 121 + (0.046 ± 0.020) T (°C).  相似文献   

15.
By using the diamond-anvil pressure cell coupled with laser heating, Ca2GeO4 in the K2NiF4-type structure has been found to decompose into the mixture Ca3Ge2O7 plus CaO at pressures greater than 200 kbar and at about 1000°C, and the same type of structure for Ca2MnO4 has been found to decompose into the mixture CaMnO3 (perovskite) plus CaO at pressures greater than 100 kbar and at about 1400°C. The decomposition product of Ca3Ge2O7 is a new compound which is isostructural with Sr3Ti2O7 and has the lattice parameters of a = 3.72 ± 0.01 and c = 19.32 ± 0.05 A? at room temperature and 1 bar pressure. The results of the study of Ca2GeO4 and Ca2MnO4 (both with the K2NiF4-type structure) strongly support the view that compounds possessing the K2NiF4-type structure are unstable relative to corresponding mixtures possessing the perovskite and rocksalt structures. It is concluded that, in the earth's mantle, the K2NiF4-type Ca2SiO4 would ultimately decompose into the mixture CaSiO3 (perovskite) + CaO or would otherwise transform to other as-yet-unknown phase(s), and that the mixture of MgSiO3 (perovskite) + MgO (the post-spinel phase of Mg2SiO4) would not adopt the K2NiF4-type structure.  相似文献   

16.
Tin dioxide (SnO2) in the rutile structure as starting material has been found to transform to the orthorhombic α-PbO2 structure (S.G. Pbcn) at about 155 kbar and 1000–1400°C when compressed in a diamond-anvil cell and heated by irradiation with a YAG laser. The lattice parameters at room temperature and 1 bar are ao = 4.719 ± 0.002, bo = 5.714 ± 0.002, and co = 5.228 ± 0.002 A?with Z = 4 for the orthorhombic form of SnO2, which is 1.5% more dense than the rutile form. Crystal-chemical arguments suggest that stishovite (SiO2) may also transform to the α-PbO2 structure at elevated pressure and temperature with an increase in zero-pressure density of about 2–3%. Mineral assemblages containing the orthorhombic SiO2 are unstable relative to those containing the perovskite MgSiO3 under lower-mantle conditions.  相似文献   

17.
In a diamond-anvil pressure cell coupled with laser heating, the system enstatite (MgSiO3)-pyrope (3 MgSiO3 · Al2O3) has been studied in the pressure region between about 100 and 300 kbar at about 1000°C using glass starting materials. The high-pressure phase behavior of the intermediate compositions of the system contrasts greatly with that of the two end-members. Differences between MgSiO3 and 95% MgSiO3 · 5% Al2O3 are especially remarkable. The phase assemblages β-Mg2SiO4 + stishovite and γ-Mg2SiO4 (spinel) + stishovite displayed by MgSiO3 were not observed in 95% MgSiO3 · 5% Al2O3, and the garnet phase, which was observed in 95% MgSiO3 · 5% Al2O3 at high pressure, was not detected in MgSiO3. These results suggest that the high-pressure phase transformations found in pure MgSiO3 would be inhibited under mantle conditions by the presence even of small amounts of Al2O3 (?4% by weight). On the other hand, pyrope displays a wide stability field, finally transforming at 240–250 kbar directly to an ilmenite-type modification of the same stoichiometry. The two-phase region, within which orthopyroxene and garnet solid solutions coexist, is very broad. The structure of the earth's mantle is discussed in terms of the phase transformations to be expected in a simple mixture of 90% MgSiO3 · 10% Al2O3 and Mg2SiO4. The seismic discontinuity at a depth of 400 km in the earth's mantle is probably due entirely to the olivine → β-phase transition in Mg2SiO4, with the progressive solution of pyroxene in garnet (displayed in 90% MgSiO3 · 10% Al2O3) occurring at shallower depths. The inferred discontinuity at 650 km is due to the combination of the phase changes spinel → perovskite + rocksalt in Mg2SiO4 and garnet → ilmenite in 90% MgSiO3 · 10% Al2O3. The 650-km discontinuity is thus characterized by an increase in the primary coordination of silicon from 4 to 6. A further discontinuity in the density and seismic wave velocities at greater depth associated with the ilmenite-perovskite phase transformation in 90% MgSiO3 · 10% Al2O3 is expected.  相似文献   

18.
High-pressure phase relations in the system NaAl3Si3O11–CaAl4Si2O11 were examined at 13–23 GPa and 1600–1900 °C, using a multianvil apparatus. A Ca-aluminosilicate with CaAl4Si2O11 composition, designated CAS phase, is stable above about 13 GPa at 1600 °C. In the system NaAl3Si3O11–CaAl4Si2O11, the CAS phase dissolving NaAl3Si3O11 component coexists with jadeite, corundum and stishovite below 22 GPa, above which the CAS phase coexists with Na-rich calcium ferrite, corundum and stishovite. At 1600 °C, the solubility of NaAl3Si3O11 component in the CAS solid solution increases with increasing pressure up to about 50 mol% at about 22 GPa, above which the solubility decreases with pressure. The maximum solubility of NaAl3Si3O11 component in the CAS phase increases with temperature up to around 70 mol% at 1900 °C at 22 GPa. The dissociation of NaAlSi2O6 jadeite to NaAlSiO4 calcium ferrite plus stishovite occurs at about 22 GPa. Lattice parameters of the CAS phase with the hexagonal Ba-ferrite structure change with increase of the NaAl3Si3O11 component: a-axis decreases and c-axis slightly increases, resulting in decrease of molar volume. Enthalpies of the CAS solid solutions were measured by high-temperature drop-solution calorimetry techniques. The results show that enthalpy of hypothetical NaAl3Si3O11 CAS phase is much higher than the mixture of NaAlSi2O6 jadeite, corundum and stishovite and is close to that of the mixture of NaAlSiO4 calcium ferrite, corundum and stishovite. When we adopt the Na:Ca ratio of 75:25 of the natural Na-rich CAS phase in a shocked Martian meteorite, Zagami, the phase relations determined above suggest that the natural CAS phase crystallized from melt at pressure around 22 GPa and temperature close to or higher than 2000–2200 °C. The inferred P, T conditions are consistent with those estimated using other high-pressure minerals in the shocked meteorite.  相似文献   

19.
Magnesioferrite grading toward magnetite has been identified as a very small but meaningful constituent of the basal iron-rich portion of the Cretaceous-Tertiary (K-T) boundary clay at the Barranco del Gredero section, Caravaca, Spain. This spinel-type phase and others of the spinel group, found in K-T boundary clays at many widely separated sites, have been proposed as representing unaltered remnants of ejecta deposited from an earth-girdling dust cloud formed from the impact of an asteroid or other large bolide at the end of the Cretaceous period. The magnesioferrite occurs as euhedral, frequently skeletal, micron-sized octahedral crystals. The magnesioferrite contains29 ± 11 ppb Ir, which accounts for only part of the Ir anomaly at this K-T boundary layer(52 ± 1 ppb Ir). Major element analyses of the magnesioferrite show variable compositions. Some minor solid solution exists toward hercynite-spinel and chromite-magnesiochromite. A trevorite-nichromite (NiFe2O4-NiCr2O4) component is also present. The analyses are very similar to those reported for sites at Furlo and Petriccio, Umbria, Italy.On the basis of the morphology and general composition of the magnesioferrite grains, rapid crystallization at high temperature is indicated, most likely directly from a vapor phase and in an environment of moderate oxygen fugacity. Elemental similarity with metallic alloy injected into rocks beneath two known impact craters suggests that part of the magnesioferrite may be derived from the vaporized chondritic bolide itself, or from the mantle; there is no supporting evidence for its derivation from crustal target rocks.  相似文献   

20.
Phase transformations in baddeleyite (ZrO2) and zircon (ZrSiO4) have been investigated in the pressure range between 100 and 300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. Baddeleyite has been found to transform to an orthorhombic cotunnite-type structure at pressures greater than 100 kbar, and is the first oxide known to adopt this structure. The lattice parameters of the cotunnite-type ZrO2 at room temperature and atmospheric pressure area = 3.328 ± 0.001 ,b = 5.565 ± 0.002 , andc = 6.503 ± 0.003A? withZ = 4 , and its volume is 14.3% smaller than baddeleyite and 7.6% smaller than the fluorite-type ZrO2. It is suggested that all the polymorphic structures of ZrO2 are possible high-pressure models for the post-rutile phase of SiO2. The polyhedral coordination in these model structures varies from 7 to “9”, compared with 6 for stishovite. If SiO2 were to adopt any of these structures in the deep mantle, Birch's hypothesis of a mixed-oxide lower mantle may still be viable, but the primary coordination of silicon would be greater than 6. Zircon has been found to transform to a scheelite-type structure at about 120 kbar as noted earlier. The scheelite-type ZrSiO4 was found to decompose further into a mixture of ZrO2 (cotunnite-type) plus SiO2 (stishovite) in the pressure range 200–250 kbar. As implied by the transitions in zircon, the large cations of U and Th in the earth's deep mantle are most likely to occur in dioxides with structures such as the cotunnite-type, rather than to occur in silicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号