首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four pyroxenes with compositions En48Fs48Wo4, En47·5Fs47·5Wo5, En45Fs45Wo10 and En40Fs40Wo20, synthesized at 1200°C at atmospheric pressure, were heat-treated at 500, 600, 700, and 800°C for various lengths of time. These pyroxenes are variously ordered with respect to Fe2+ and Mg2+ without unmixing. The Fe2+-Mg2+ distribution over the two nonequivalent sites M1 and M2, determined through Mössbauer spectroscopy, is found to be a function of both temperature and concentration of Ca2+ at the M2 site. The preference of Fe2+ for the M2 site increases with decreasing temperature and increasing Ca2+. These data can be used to determine cation equilibration temperatures of lunar and terrestrial pigeonites. The lunar pigeonites usually indicate equilibration temperatures of 700–860°C, except the pigeonite from rock 14053, which may have been subjected to shock heating due to meteoritic impact.  相似文献   

2.
Equilibrium reversals of Fe2+Mg distribution between the M1 and M2 sites of an orthopyroxene from the Johnstown meteorite were achieved at several temperatures between 700 and 1000°C. One single crystal was used for the whole thermal treatment and for collecting all the X-ray data after quenching. The intracrystalline ion exchange for the bulk chemical composition: (Mg1.453Fe0.441Cr0.024Ca0.054Mn0.015Fe0.005Ti0.003Al0.005)(Si1.960Al0.040)O6 is given by: ln KD = −3027(±39)/T(K) + 0.872(±0.013)> where KD is the distribution coefficient for the reaction: FeM22+ + MgM1 = MgM2 + FeM12+.A transmission electron microscopy (TEM) study of part of the crystal showed the presence of very thin augite lamellae and Guinier-Preston zones indicating a relatively rapid cooling of the host rock at temperatures close to 1000°C. The new temperature scale yields a relatively high quenching temperature of 379 (±8)°C for the pyroxene which appears consistent with a rapid cooling (estimated few degrees per hundred years) of a magmatic cumulate excavated by an impact on its parental body.  相似文献   

3.
Magnesium orthosilicate with spinel structure (γ-Mg2SiO4) was synthesized at about 250 kbar and 1000°C. Unit cell dimension was established to be 8.076 ± 0.001Å. X-ray powder diffraction pattern revealed a significant difference between γ-Mg2SiO4 and other γ-M2SiO4 spinels (M = Fe, Co, and Ni) in the intensities of (111) and (331) reflections, both of which are virtually absent in the Mg2SiO4 spinel. This feature could be thoroughly understood by the calculation of the intensities for several silicate spinels.  相似文献   

4.
5.
Volume measurements for magnesiowüstite (Mg0.6Fe0.4)O, were carried out up to pressures of 10.1 GPa in the temperature range 300–1273 K, using energy-dispersive synchrotron X-ray diffraction. These data allow reliable determination of the temperature dependence of the bulk modulus and good constraint on the thermal expansitivity at ambient pressure which was previously not known for magnesiowüstite. From these data, thermal and elastic parameters were derived from various approaches based on the Birch–Murnaghan equation of state (EOS) and on the relevant thermodynamic relations. The results from three different equations of state are remarkably consistent. With (∂KT/∂P)T fixed at 4, we obtained K0=158(2) GPa, (∂KT/∂T)P=−0.029(3) GPa K−1, (∂KT/∂T)V=−3.9(±2.3)×10−3 GPa K−1, and αT=3.45(18)×10−5+1.14(28)×10−8T. The K0, (∂KT/∂T)P, and (∂KT/∂T)V values are in agreement with those of Fei et al. (1992) and are similar to previously determined values for MgO. The zero pressure thermal expansitivity of (Mg0.6Fe0.4)O is found to be similar to that for MgO (Suzuki, 1975). These results indicate that, for the compositional range x=0–0.4 in (Mg1−xFex)O, the thermal and elastic properties of magnesiowüstite exhibit a dependence on the iron content that is negligibly small, within uncertainties of the experiments. They are consequently insensitive to the Fe–Mg partitioning between (Mg, Fe)SiO3 perovskite and magnesiowüstite when applied to compositional models of the lower mantle. With the assumption that (Mg0.6Fe0.4)O is a Debye-like solid, a modified equation of heat capacity at constant pressure is proposed and thermodynamic properties of geophysically importance are calculated and tabulated at high temperatures.  相似文献   

6.
The elastic moduli of a synthetic single crystal of pyrope (Mg3Al2Si3O12) have been determined using a technique based on Brillouin scattering. These results are used in an evaluation of the effect of composition on the elastic properties of silicate garnet solid solution series (Mg, Fe, Mn, Ca)3 (Al, Fe, Cr)2 Si3O12. In the pyralspites (Mg FeMn aluminum garnets), for which a large amount of data is available, this analysis indicates that the bulk modulus K is independent of the Fe2+/Mg2+ ratio, which is similar to the behavior observed in olivines and pyroxenes. However, the shear modulus μ of the garnets increases by 10% from the Mg to the Fe end member, in contrast to the decrease of μ with Fe content which is observed in olivines and pyroxenes. This contrasting behavior is most probably related to the oxygen coordination of the cation site occupied by Mg2+ and Fe2+ in these different minerals.  相似文献   

7.
Magnetic properties and crystal structure parameters of synthetic solid solutions Fe3O4Fe3TiO4, Fe2O4MgFe2O4 and Fe3O4Mg2TiO4 have been studied. Basic regularities in the behaviour of saturation magnetisation (Is), Curie temperature (TC) and cubic lattice parameter a during the substitution of Ti and Mg ions for Fe ions have been found. As the concentration of Ti ions increases, Is reduces from 70 Gs·cm3 g?1 to 0, TC changes from 580 to 130°C and a from 8.391 to 8.520 Å. Growth of the Mg concentration leads to changes in Is to 19.8 Gs·cm3, g?1, TC, to 440°C and a, to 8.360 Å. The full Fe ions substitution gives “a”=8.440 A?.Chemical compositions of the samples, in which the valency variation of Fe ions at oxidation leads to an increase in susceptibility and TC, have been determined.  相似文献   

8.
The crystal structure of fassaite from the Angra dos Reis meteorite has been determined by least-squares refinement of three-dimensional X-ray data to anR value of 3.3%. The pyroxene is monoclinic, space groupC2/c, with unit-cell dimensionsa = 9.738(1),b = 8.874(2),c = 5.2827(5)Å, β = 105.89(1)°, andV = 439.1(1)Å3. Average bond lengths are (Si,Al)-O = 1.651, M1-O = 2.061, and M2-O = 2.489Å. The distribution of iron and magnesium between M1 and M2 suggests a temperature of equilibration greater than 1000°C.Electron microprobe analysis of several fassaite grains reveals small but statistically significant variations of (Mg + Si) versus (Al - Ti). The range of fassaite composition may be represented byEn3Hd22TiCpx6(Di53±2CaTs16?2) whereEn=Mg2Si2O6,Hd=CaFeSi2O6,TiCpx=CaTiAl2O6,Di=CaMgSi2O6,CaTs=CaAl2SiO6. Most fassaite analyses calculated on the basis of four cations yielded greater than six anions, suggesting that part of the titanium or chromium might be reduced to Ti3+ or Cr2+.  相似文献   

9.
A new phase which is much denser than the component oxides of spinel (MgAl2O4) was synthesised at loading pressures greater than 250 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. The new phase (ε-MgAl2O4) was indexed on the basis of an orthorhombic cell with a = 8.507 ± 0.004, b = 2.740 ± 0.003, c = 9.407 ± 0.005Å, and Z = 4 at room temperature and 1 bar pressure. Thus the molar volume for ε-MgAl2O4 at the above conditions was calculated to be 33.01 ± 0.07 cm3, which is 10.3% less than that of the mixture corundum plus periclase. The dense phase of spinel found in shock-wave experiments can be reasonably interpreted as ε-MgAl2O4, and this may be a potentially important mineral component of the earth's lower mantle. The new structure may also provide a possible candidate for the dense phases of Fe3O4 and Mg2SiO4 which were found by shock experiments.  相似文献   

10.
The Barda igncous complex of western Saurashtra (Gujarat) consists of a group of volcanic and subvolcanic igneous rocks, viz., pitchstone, rhyolite, felsite, granophyre and dioritic rocks. They are generally grouped under the Deccan Trap series and have been emplaced through the Deccan Trap basalt flows. Using different varieties of clinopyroxenes as characteristic phases several units of felsites and granophyres have been distinguished in the southeastern part of the Barda hills. The augites of the adjacent Deccan Trap basalt flows range between Ca33Mg61Fe6 and Ca41Mg44Fe15. (All compositions of minerals are derived from optical data). The clinopyroxene of a monzodiorite is Ca41Mg42.5Fe16.5. In the felsites and granophyres the clinopyroxenes range from salite (Ca46Mg31Fe23) through ferrosalite (Ca46Mg20Fe34) and ferroaugite (Ca43Mg17Fe46) to hedenbergite (Ca46Mg9Fe45). Beyond that a peralkaline trend is indicated by common occurrence of aegirine-augite granophyre in which the clinopyroxene is alkalic with 20 percent of NaFe3 Si2O6 (acmite) molecule. Several bodies of acmite-riebeckitebearing granophyres have been found; they also indicate a high degree of oxidation. A fayalitic olivine-bearing granophyre is of interest as it shows the strongest iron enrichment with 13 weight percent FeO + Fe2O3; its mineralogy indicates a very low oxygen fugacity of 1013 atmospheres during crystallization.  相似文献   

11.
Plagioclase in cataclastic anorthosite 67075 occurs as angular matrix grains and as recrystallized clasts of micro-anorthosite. Olivines are Fe-rich and fall into two compositional groupings. Large grains of pyroxene show exceptionally well-developed exsolution lamellae analogous to those observed in pyroxenes from layered complexes. The low-Ca component in both pigeonites and augites shows varying degrees of inversion to orthopyroxene. The lattices of host and lamellae may deviate slightly (up to 2°) from the ideal orientation. Very slow cooling from magmatic temperatures is required to produce the coarse exsolution textures and inversion features. Augite macrocrystals are distinctly subcalcic indicating crystallization at temperatures around1100 ± 50°C while host-lamellae pairs and small grains in lithic clasts and matrix indicate reequilibration on a micron scale to temperatures less than 800°C. Pyroxene compositions tend to cluster into two groups both of which are among the most Fe-rich reported for highland pyroxenes. Ti and Al contents of pyroxenes are very low and Ti, Cr, and Mn follow well-established magmatic differentiation trends. The high Cr content may reflect low?O2 conditions and/or early crystallization of olivine and plagioclase.The87Sr/86Sr ratios in lunar anorthosites are the lowest reported for any lunar rock. It is likely that anorthosites formed as cumulates during the major differentiation episode which occurred prior to~4.3AE. Recrystallization features are common and39Ar/40Ar ages cluster around 4.0 AE. This may be the result of the intense bombardment prior to 4.0 AE which caused repeated cycles of in-situ fracturing and granulation followed by recrystallization. The low siderophile element content and the inferred slow cooling indicate a plutonic source region (10km) not frequently plumbed by impact events. The Fe-rich silicates indicate crystallization from a melt at an advanced stage of fractionation. However, the low REE abundances are not consistent with late-stage crystallization. Plagioclase apparently crystallized relatively early and was concentrated by flotation and/or convection currents while the mafic minerals crystallized from a fractionated trapped liquid. The chemical, isotopic, and mineralogical data place stringent constraints on the nature of genetically related rocks and the relationship of anorthosites to other members of the ANT suite does not appear to be one ofsimple fractionation. The data presented in this paper are consistent with the Taylor-Jake?model of lunar evolution.  相似文献   

12.
Samples from the surface of lava flows discharged by the 2012–2013 Tolbachik Fissure Eruption were found to contain oxysulfates of copper, sodium, and potassium: K2Cu3O(SO4)2 (fedotovite), NaKCu2O(SO4)2, and Na3K5Cu8O4(SO4)8. The last two phases have no naturally occurring or synthetic analogues that we are aware of. They form flattened crystals of prismatic to long-prismatic habits. The crystals of Na3K5Cu8O4(SO4)8 have a chemical composition corresponding to the empirical formula Na2.22K5.47Cu8.02S8.05O36. An X-ray analysis of this compound showed that it has a monoclinic symmetry, P2/c, a = 13.909(4), b = 4.977(1), c = 23.525(6) Å, β = 90.021(5)°, V = 1628.3(7) Å3. The crystal structure was determined by direct techniques and refined to yield R 1 for 3955 reflexes//web// with F 2 > 4σF. The compound NaKCu2O(SO4)2 also belongs to the monoclinic system, P2/c, a = 14.111(4), b = 4.946(1), c = 23.673(6) Å, β = 92.052(6)°, V = 1651.1(8) Å3. The structure was determined by direct techniques to yield a tentative structural model that has been refined up to R 1 = 0.135 for 4088 reflexes with F 2 > 4σF. The crystal structure of Na3K5Cu8O4(SO4)8 is based on chains of [O2Cu4]4+ consisting of rib-coupled oxy-centered tetrahedrons of (OCu4)6+. The chains are surrounded by sulfate radicals, resulting in columns of {[O2Cu4](SO4)4}4? aligned along the b axis. The interchain space contains completely ordered positions of Na+ and K+ cations. The principle underlying the connection of NaKCu2O(SO4)2 columns in the crystal structure of {[O2Cu4](SO4)4}4? is different, in view of the relation Na:K = 1 as contrasted with 3:5 for the compound Na3K5Cu8O4(SO4)8. The presence of oxy-centered tetrahedrons in the structure of these new compounds furnishes an indirect hint at the importance of polynuclear copper-oxygen radicals with centering oxygen atoms as forms of transport of copper by volcanic gases.  相似文献   

13.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Two synthetic pyroxenes (FeSiO3, MgSiO3) and five natural pyroxenes with compositions of about Fs80En20, Fs60En40, Fs50En50, Fs40En60, and Fs20En80 have been subjected to pressures up to250 ± 50kbars at a temperature of about1500 ± 200°C in a diamond anvil cell heated by an infrared laser beam. After quenching and unloading X-ray data analysis indicates that (1) those with Mg less than 50% undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure, and (2) those with Mg higher than 60%, undergo the following reactions: 2(Mg,Fe)SiO3 (pyroxene) → (Mg,Fe)2SiO4 (spinel) + SiO2 (stishovite) → 2(Mg,Fe)SiO3 (hexagonal phase) → 2(Mg,Fe)O (magnesiowu¨stite) + SiO2 (stishovite) with increase of pressure.  相似文献   

15.
This study investigates the influence of Ca2+ and Mg2+ on the removal of F? by magnesium potassium phosphate (MPP) from water. The kinetic experiments reveal that the F? concentration decreased from 3.5 to 3.31 mg L?1 in a single (F?) system and to 1.45 mg L?1 in a ternary system (F?, Ca2+, and Mg2+) after 1 min, respectively. Thus, the F? removal efficiencies are found to increase by about 53% with the co‐active effect of Ca2+ and Mg2+ in the solution. Moreover, Ca2+ and Mg2+ are almost completely removed in the F?, Ca2+, and Mg2+ system. According to the pseudo‐first‐order modeling, the rate constants k for F?, Ca2+, and Mg2+ are 0.00348, 0.0106, and 0.0159 min?1 respectively; thus, Mg2+ > Ca2+ > F?. In the ternary system, the removal efficiencies are 53.29–66.03% for F?, 99.99–100% for Ca2+, and 87.21–95.19% for Mg2+ with initial pH 5–10. The removal efficiencies of F? increases with increases in initial concentrations of F?, Ca2+, and Mg2+. The removal of F? is governed by two routes: 1) adsorption by electrostatic interactions and outer sphere surface complexation; 2) co‐precipitation with Ca3(PO4)2, CaHPO4, Mg3(PO4)2, and Mg(OH)2.  相似文献   

16.
Fe-Mg interdiffusivities in (Fe,Mg)O magnesiowüstite have been measured in experiments conducted at pressures of 7-35 GPa and temperatures of 1573-1973 K using a Kawai-type high-pressure apparatus. The diffusion profiles were measured across the interface between MgO and (Fe0.5,Mg0.5)O samples by electron microprobe analysis, and the Fe-Mg interdiffusivities were determined as DFe-Mg=D0exp{−E*(1+PV*Mg/E*Mg)/RT}, where D0=4.1(+16.1−3.3)×10−7 m2/s, E*=(1−CMg)E*Fe+CMgE*Mg (activation energy for the concentration of Mg, where E*Fe=113(±74) kJ/mol and E*Mg=226(±32) kJ/mol), the activation volume V*Mg=1.8(±1.2)×10−6 m3/mol. By extrapolating these results to the P-T conditions of the core-mantle boundary, we conclude that the interdiffusivity of Fe-Mg in magnesiowüstite at the bottom of the lower mantle is at least one order of magnitude larger than that at the top of the lower mantle.  相似文献   

17.
The diffusivity of18O in forsterite Mg2SiO4 has been measured in the temperature range 1150–1600°C. The activation energy of oxygen self-diffusion in this silicate is found to equal0.32 ± 0.04MJ/mol(77 ± 10kcal/mol), and there is no dependence of the diffusivity upon the oxygen partial pressure surrounding the samples. The diffusion profiles were analysed either with an ion probe or by means of the18O(p, α)15N nuclear reaction. The latter method made use of a resonance in the nuclear cross-section in the case of diffusion profiles shorter than 100 nm (1000Å); for diffusion profiles up to 4 μm the same reaction was used, but in a non-resonant mode. New data on creep in forsterite and natural olivine are also given, including the influence of the oxygen partial pressurepO2 which is zero for forsterite and proportional to(pO2)16 for natural olivine. From this set of data we infer the possible relationship between diffusion and creep for these materials. This relationship may be more complicated than that predicted by simple climb mechanism.  相似文献   

18.
The high pressure spinel polymorph of Ni2SiO4 persists metastably at 713°C and atmospheric pressure. The enthalpy of the olivine-spinel transition was obtained by measuring the heats of solution of both polymorphs in a molten oxide solvent, 2PbO · B2O3, at that temperature. For Ni2SiO4(ol)→Ni2SiO4, ΔH9860 = +1.4 ± 0.7kcal/mol. The heat content increments, H986 ? H297, were found to be: olivine, 25.73 ± 0.42kcal/mol, and spinel, 25.39 ± 0.20kcal/mol. The measured enthalpy of the transformation is consistent with the low slope of the phase boundary, ?P/?T = ~ 12b/deg, observed by Akimoto and others. The entropy of the olivine-spinel transition in Ni2SiO4 is accordingly about a factor of three smaller in magnitude (ΔS = ~ ?1cal/deg mol) than that for Co2SiO4,Fe2SiO4,Mg2SiO4or Mg2GeO4 (ΔS = ?3to?3.5cal/deg mol).  相似文献   

19.
Experimental study of the phase boundary for the disproportionation of the inverse spinel Mg2SnO4 into its isochemical mixed oxides indicates a slope dP/dT = 40 ± 10bars/°K. This positive slope is consistent with the large entropies of inverse (relative to normal) spinels predicted from high-temperature entropy-molar volume systematics. Thermodynamic data do not support the existence of a distinctly negative slope for the proposed disproportionation of Mg2SiO4 normal spinel. Evidence from X-ray and phase equilibria studies suggests the possibility that Si4+, Mg2+, and Fe2+ share the octahedral sites in silicate spinels under mantle conditions. The consequences of this partial inverse character are a positive slope for the postulated spinel-mixed oxide phase boundary near 650 km depth, removal of a widely accepted constraint on mantle-wide convection, and anomalous elasticity-density behaviour within the transition zone.  相似文献   

20.
Some recent calc-alkaline andesites and dacites from southern and central Martinique contain basic xenoliths belonging to two main petrographic types:
  • The most frequent one has a hyalodoleritic texture (« H type ») with hornblende + plagioclase + Fe-Ti oxides, set in an abundant glassy and vacuolar groundmass.
  • The other one exhibits a typical porphyritic basaltic texture (« B type ») and mineralogy (olivine + plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides and scarce, or absent hornblende).
  • Gradual textural and mineralogical transitions occur between these two types (« I type ») with the progressive development of hornblende at the expense of olivine and pyroxenes. Mineralogical and chemical studies show no primary compositional correlations between the basaltic xenoliths and their host lavas, thus demonstrating that the former are not cognate inclusions; they are remnants of basaltic liquids intruded into andesitic to dacitic magma chambers. This interpretation is strengthened by the typical calc-alkaline basaltic composition of the xenoliths, whatever their petrographic type (« H », « I » or « B »). The intrusion of partly liquid, hot basaltic magma into colder water-saturated andesitic to dacitic bodies leads to drastic changes in physical conditions. The two components; the basaltic xenoliths are quenched and homogeneized with their host lavas with respect to To;fO2 andpH2O conditions. « H type » xenoliths represent original mostly liquid basalts in which such physical changes lead to the formation of hornblende and the development of a vacuolar and hyalodoleritic texture. The temperature increase of the acid magma depends on the amount of the intruding basalt and on the thermal contrast between the two components. The textural diversity which characterizes the xenoliths reflects the cooling rate of the basaltic fragments and/or their position relative to the basaltic bodies (chilled margins or inner, more crystallized, portions). In addition to physical equilibration (T, fO2) between the magmas, mixing involves:
  • mechanical transfer of phenocrysts from one component to another, in both directions;
  • volatile transfer to the basaltic xenoliths, with chemical exchanges.
  • It is here demonstrated that a short period of time (some ten hours to a few days) separates the mixing event from the eruption, outlining the importance of magma mixing in the triggering of eruption. The common occurrence of basaltic xenoliths (generally of « H » type) in calc-alkaline lavas is emphasized, showing that this mechanism is of first importance in calc-alkaline magma petrogenesis.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号