首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

2.
The regionally prominent main boundary thrust (MBT) of the Himalayan fold-thrust belt in northwest India is typically defined by the presence of Proterozoic rocks in the hanging wall and Cenozoic rocks in the footwall. The present study focuses on identifying the MBT contact across Gambar River section in Himachal Pradesh, India, using alternative methodologies, such as the meter-scale litho-structural mapping, followed by detrital zircon U–Pb geochronology to precisely identify the thrust contact and provide insights on the deformation history of the MBT zone. We have identified a sharp change in the age (from ~600 to ~61 Ma) of the sedimentary units along a narrow zone in the study area by detrital zircon U–Pb geochronology using LA-ICP-MS. The sharp change in the detrital zircon U–Pb age data thus delineate the MBT occurring in the area along a < ~1 m thickness. The lithological assemblage and the age data indicate the unified maximum depositional age from ~700 to ~600 Ma for the hanging wall rocks, which have been equated with the Krol Group of the Lesser Himalayan Sequence (LHS). In comparison, the footwall rocks exhibit the maximum depositional age of ~61 Ma and have been equated with the Cenozoic Subathu Formation of the Sub-Himalayan Sequence (SHS).  相似文献   

3.
峨眉山超级地幔柱对四川盆地烃源岩热演化的影响   总被引:9,自引:1,他引:8       下载免费PDF全文
四川盆地的构造、热演化与峨眉山超级地幔柱有密切关系.峨眉山超级地幔柱对四川盆地中二叠统之下的烃源岩热演化有着十分重要的影响.在四川盆地热历史恢复的基础上,研究了峨眉山超级地幔柱对盆地内烃源岩,特别是中二叠统之下的古生界烃源岩热演化的影响.结果表明,中二叠统及下伏烃源岩的热演化受中晚二叠世发生在盆地西南方向的峨眉山超级地幔柱的影响巨大,且具地区差异性.即在靠近峨眉山地幔柱中心的地区,有机质迅速成熟并达到其成熟度的最高值(以H1井为代表),古生界烃源岩迅速进入过成熟,此后未有二次生烃;而远离峨眉山地幔柱的盆地大部分地区,古生界烃源岩在二叠纪以来具有多次生烃过程.中生界烃源岩热演化,主要和前陆盆地阶段的构造过程包括前陆沉积和断裂的逆冲推覆等相关. 在烃源岩有机质成熟度演化史的基础上,从盆地热史和烃源岩热演化的角度指出了下二叠统及之下烃源层在四川盆地不同地区油气勘探中的不同意义.  相似文献   

4.
Relict high-pressure granulite-facies rocks have been found in the Ami?tsoq gneisses and inclusions of the older Akilia supracrustal association, on islands south of Godthåb. Only amphibolite-facies assemblages have been found in Ameralik dykes and younger rocks from this area. The Ami?tsoq gneisses are depleted in Rb and U relative to those of Ameralik and Isua. Well-fitted Pb/Pb and Rb-Sr isochrons on Ami?tsoq granulites indicate that this depletion, correlated with the granulite-facies metamorphism, occurred ca. 3600 Ma ago. Textural features suggest that the present cpx + opc + gnt + plag + qtz + hbl assemblages evolved from earlierintermediate-P assemblages (cpx + opx + plag), probably during cooling from the metamorphic peak. Re-equilibrium of olderintermediate-P assemblages in local environments of low ?H2O, during the ca. 2800-Ma metamorphism of the Malene supracrustals, is feasible but is considered unlikely. Either interpretation requires crustal thickness of at least 20 km and geothermal gradients of?30°C/km, ca.3600Ma ago. The higher heat production of early Archaean times was apparently dissipated through oceanic, rather than continental, areas.  相似文献   

5.
Petrographic and chemical evidence suggests that boulders from a conglomeratic unit in the Isua supracrustal succession were derived by the erosion of an acid volcanogenic sediment. Six samples of the boulders and surrounding matrix yield a Rb-Sr whole rock isochron with a slope corresponding to an age of 3860 ± 240 m.y. (2 sigma error), but consideration of the initial87Sr/86Sr ratio constrains the possible age of formation of 3710 ± 900 m.y. This is in general agreement with a published Pb/Pb age of 3760 ± 70 m.y. on Isua banded ironstones.Pb isotope compositions as well as highly fractionated, heavy element depleted, rare earth element abundance patterns for the boulders suggest that their igneous precursors were derived from a source region with a similar geochemical history to that of some components of the 3700–3800 m.y. old Ami?tsoq gneisses, involving fractionation of garnet during their evolution.A Pb/Pb whole-rock isochron for Ami?tsoq gneisses from Isua yields an age of 3800 ± 120 m.y. (2σ), in good agreement with previously published Rb-Sr age data on the same rocks. The rock leads are highly unradiogenic and demonstrate substantial U depletion at least 3800 ± 120 m.y. ago. A two-stage model for the U-Pb system yields an average238U/204Pb (μ1) value of 9.3 ± 0.2 for the source region, which is significantly different from the published value of 9.9 ± 0.1 for the Isua iron formation. This indicates the existence of U-Pb heterogeneities between the source regions of plutonic and supracrustal rocks by about 3700–3800 m.y. ago. Attempts to apply U-Pb whole-rock dating to the Ami?tsoq gneisses were unsuccessful because of geologically recent U loss, possibly due to groundwater leaching.A Rb-Sr whole-rock isochron on a suite of Ami?tsoq gneiss samples from a different locality in the Isua region has yielded an age of 3780 ± 130 m.y.In contrast to the Godthaab area, there is no geochronological evidence at Isua for major rock-producing or tectonothermal events after about 3700 m.y. ago. The entire gneiss-supracrustal system developed within the approximate interval 3900–3700 m.y. ago.  相似文献   

6.
New lead isotope data for calc-alkaline volcanic rocks from New Zealand and the Lesser Antilles, combined with published data for Japan and the Andes, show that the spread of isotopic composition in each volcanic arc region is small (2–4% range in Pb206/Pb204) compared to the range of values observed (8%). Pb207 and Pb206 increase systematically from Japan to the Andes to New Zealand to the Caribbean. Likewise Pb208 and Pb206 are positively correlated, but there is evidence of long term (108 m.y.) differences of Th/U between the regions studied. The apparent U/Pb ratios of Peruvian, New Zealand and Caribbean calc-alkaline volcanics do not differ greatly from the apparent ratio for the single stage growth curve for stratiform Pb ores. In contrast the apparent U/Pb ratios for Japanese calc-alkaline volcanics are distinctly lower. Although the Japanese Pb has model ages near zero, the other volcanic arcs have negative (future) model ages, the Caribbean samples being most extreme in this respect. Published oceanic volcanic and sediment lead isotopic composition data and the new results are consistent with a model of volcanic arc evolution in which oceanic sediments are dragged into the mantle, mixed to some degree with mantle material, and partially melted to form calc-alkaline magmas. Either constant continental volume or continental growth are compatible with this process. The mixing of two separate « frequently mixed » leads is the minimum complexity required to explain volcanic are leads. Mathematically there are probably no single-stage leads but isotopic homogenization during earth history has caused lead isotopes to closely approximate a single stage growth. The use of lead isotopic composition as a « tracer » suggests that mantle — crust geochemical evolution involves an exchange of material and is not simply a one-way process. The Pb isotopic composition of the Auckland, New Zealand alkali basalts is apparently the result of incomplete mixing of two leads to give a linear array of Pb207/Pb204-Pb206/Pb204 data with negative slope.  相似文献   

7.
Geochronological studies of mafic-ultramafic intrusions occurrence in the northern Dabie zone (NDZ) suggest that these pyroxenite-gabbro intrusions formed 120—130 Ma ago should be post-collisional magmatic rocks[1—4]. These mafic-ultramafic rocks provid…  相似文献   

8.
Recently, some scholars have proposed that the South China Block (SCB) was controlled by a compressive tectonic regime in the middle–late Early Cretaceous, challenging the belief that the SCB was under an extensional setting during the Cretaceous. The Early Cretaceous tectonic setting constraint in the SCB can offer vital insight to clarify the Mesozoic subduction history of the Paleo-Pacific. Therefore, to determine the SCB tectonic regime during the Early Cretaceous, this study investigated sedimentary rocks from the Lower Cretaceous Heshui Formation in the Xingning Basin, a foreland basin located in the southeastern SCB. Provenance analysis was performed using sandstone modal analysis, sandstone geochemical characteristics, and detrital zircon geochronology. Based on the results, we discussed basin sediment sources and the SCB tectonic regime during the Early Cretaceous. The results showed that the maximum Heshui Formation depositional age was 103 Ma ± 1.6 Ma in the Early Cretaceous Albian. Detrital framework modes and geochemical characteristics of sandstone indicated that Heshui Formation's source rocks were granites and sedimentary rocks. The detrital zircon U–Pb ages could be classified into two major and four subordinate age populations. The Wuyi Terrane to the north and southeast coastal regions to the east were the primary potential Heshui Formation source areas. However, the lower and upper sandstones are different in the peak ages, ~437 and ~146 to 104 Ma, respectively, indicating that the major source area shifted from the Wuyi Terrane to the southeastern coastal regions during the late Early Cretaceous. The sandstone modal analysis results indicated that the source area comprised mainly collisional–orogenic material. The SCB was under a compressive tectonic regime during the late Early Cretaceous and this compression action continued until at least 103 Ma ± 1.6 Ma.  相似文献   

9.
The first comprehensive chemical and Sr–Nd–Pb isotopic data set of Plio–Pleistocene tholeiitic and alkaline volcanic rocks cropping out in Sardinia (Italy) is presented here. These rocks are alkali basalts, hawaiites, basanites, tholeiitic basalts and basaltic andesites, and were divided into two groups with distinct isotopic compositions. The vast majority of lavas have relatively high 87Sr/86Sr (0.7043–0.7051), low 143Nd/144Nd (0.5124–0.5126), and are characterised by the least radiogenic Pb isotopic composition so far recorded in Italian (and European) Neogene-to-Recent mafic volcanic rocks (206Pb/204Pb=17.55–18.01) (unradiogenic Pb volcanic rocks, UPV); these rocks crop out in central and northern Sardinia. Lavas of more limited areal extent have chemical and Sr–Nd–Pb isotopic ratios indicative of a markedly different source (87Sr/86Sr=0.7031–0.7040; 143Nd/144Nd=0.5127–0.5129; 206Pb/204Pb=18.8–19.4) (radiogenic Pb volcanic rocks, RPV), and crop out only in the southern part of the island. The isotopic ratios of these latter rocks match the values found in the roughly coeval anorogenic (i.e. not related to recent subduction events in space and time) mafic volcanic rocks of Italy (i.e. Mt. Etna, Hyblean Mts., Pantelleria, Linosa), and Cenozoic European volcanic rocks. The mafic rocks of the two Sardinian rock groups also show distinct trace element contents and ratios (e.g. Ba/Nb>14, Ce/Pb=8–25 and Nb/U=29–38 for the UPV; Ba/Nb<9, Ce/Pb=24–28 and Nb/U=46–54 for the RPV). The sources of the UPV could have been stabilised in the Precambrian after low amounts of lower crustal input (about 3%), or later, during the Hercynian Orogeny, after input of Precambrian lower crust in the source region, whereas the sources of the RPV could be related to processes that occurred in the late Palaeozoic–early Mesozoic, possibly via recycling of proto-Tethys oceanic lithosphere by subduction.  相似文献   

10.
Sr- and Pb-isotope compositions and Rb, Sr, Ce, Nd and K2O contents have been determined for the Iblean Mountain and Mt. Etna volcanics in eastern Sicily. Isotope variations within each of these regions have been interpreted as reflecting the heterogeneous nature of the source regions in the upper mantle. The87Sr/86Sr ratios of all these volcanics are less than 0.705, which is taken to indicate that their source regions evolved with lower Rb/Sr ratios than the bulk earth.87Sr/86Sr and Ce/Nd ratios determined in the Mt. Etna tholeiites are positively correlated suggesting that fractionation(s) in Rb/Sr are accompanied by fractionation(s) in light REE in the source regions of these volcanics. Pb-isotope compositions form a linear array in the207Pb/204Pb-206Pb/204Pb plot which has a negative age slope. This array represents either a very recent U/Pb fractionation in the source regions, or a mantle mixing line. Imperfect correlation between the Sr- and Pb-isotope compositions of these volcanics suggests that U/Pb and Rb/Sr have not always increased or decreased in unison during the differentiation of these source regions.  相似文献   

11.
The Lengshuikeng Ag‐Pb‐Zn ore field is located in the North Wuyi Mesozoic volcanic belt south of the Qinzhou–Hangzhou suture zone between the Yangtze and Cathaysia paleo‐plates. Previous zircon U–Pb geochronological studies on ignimbrites and tuffs from this area have yielded conflicting ages of 157–161 Ma (Early Upper Jurassic) and 137–144 Ma (Early Lower Cretaceous). Volcanic rocks in the ore field have even been proposed to include both ages. Our SHRIMP zircon U–Pb dating of the ignimbrite and tuff samples from the ore field, along with field observations and results from geochronological work on other volcanic and sub‐volcanic rocks in the region, shows that two populations of magmatic zircons, one autocrystic and the other xenocrystic, are present in the pyroclastic rocks. The autocrystic zircons have ages suggesting formation/eruption at approximately 140 Ma, whereas the xenocrystic zircons give ages of 155–159 Ma, indicating intrusion of granitic porphyries in the Early Upper Jurassic. Therefore, the pyroclastic rocks in the Lengshuikeng Ag–Pb–Zn ore field formed in the Early Lower Cretaceous. The youngest zircon U–Pb ages from pyroclastic rocks may not represent the formation/eruption ages of the host rock, depending most likely on the existence and/or abundance of juvenile or vitric pyroclasts in the rocks.  相似文献   

12.
Fluids in the deep subduction zones play an impor-tant role in the process of crust-mantle interaction. This has been proved by a large number of studies on the geochemistry of island arc volcanic rocks[1―9]. Study on high-pressure metamorphic rocks within orogen shows that the dehydration and devolatilization of subducted oceanic crust and sediments can release amounts of water during progressive metamorph- ism[10―13]. The origin of the fluids in the subduction zones provides important info…  相似文献   

13.
On the basis of a dynamic model of a continuous Pb isotope evolution, the variations in the isotopic ratios of uranogenic and thorogenic Pb in a number of young ore deposits, ocean sediments and volcanic rocks from mid-ocean ridges, oceanic islands, island arcs and continents are evaluated. The deviations in the Th/U ratio from its model values are calculated. A model parameterT which indicates a more ancient enrichment in U/Pb (crustal-type Pb sources) or younger enrichment in U/Pb (mantle-type Pb sources) is also calculated. The relative change in the Th/U ratio is close to 1 for mantle-type Pb sources (lowerT values) and decreases for crustal-type Pb sources (higherT values). An interpretation of these changes could be connected with the differences in the U and Th geochemical behaviours in metamorphic processes under the conditions of a deeper (mantle) or crustal source owing to the differences in their valence states. In some cases they have similar (U4+ and Th4+) migration abilities; in others (U6+ and Th4+), considerably different.  相似文献   

14.
The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are characterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first observed that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical characters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional mafic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.  相似文献   

15.
The Cenozoic magmatic rocks of shoshonitic series in the easternQinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMII end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau.  相似文献   

16.
Granitoid rocks interspersed with greenstone belts together comprise Archaean cratons throughout the world. The greenstone belts contain a wide variety of volcanic rocks which, despite cyclical variations in composition, generally change from ultramafic komatiites toward the stratigraphic base of the successions, upward through tholeiitic basalts and calc-alkaline andesites, to silici-alkalic rhyodacites toward the top. These extrusive rocks are intruded by rocks of a similar wide compositional range, which are probably comagmatic and subvolcanic to the former. The volcanic rocks are also intercalated with, and flanked by, volcaniclastic and distinctive immature sedimentary strata, including turbiditic greywacke and polymictic conglomerate. All are products of the prolonged volcanism that dominated Archaean supracrustal evolution and metallogenesis.Rare element pegmatites are associated with the Archaean granitic intrusions. Four important types of metalliferous ores, iron-manganese, nickel-chrome, gold-silver and copper-zinc occur in the greenstone belts, often co-regionally with one another in the same mining districts. Algoma type iron-formations of oxide, carbonate, silicate and sulfide facies occur throughout the volcano-sedimentary successions from base suggest common genetic processes for these ores. The Algoma type iron-formations are chemical sedimerare chromite deposits are restricted to the stratigraphically lower, ultramafic komatiites. Important gold ores are hosted primarily in the tholeiitic basalts, particularly where these are intercalated with ankeritic-pyritic chemical sedimentary strata, but smaller gold deposits are also known in stratigraphically lower ultramafic and higher felsic volcanic rocks. The largest massive base metal sulfide deposits occur in the stratigraphically higher felsic rhyodacitic members.The close spatial associations between deposits of these metals in Archaean rocks, particularly those of certain nickel, gold and base metal ores with iron-formation, together with their many similar geological characteristics, suggest common genetic processes for these ores. The Algoma type iron-formations are chemical sedimentary precipitates from ferruginous hydrothermal fluids that were periodically discharged on the sea floor during the prolonged Archaean subaqueous volcanism. The massive base metal deposits are of similar origin, essentially Cu-Zn-rich varieties of sulfide-facies iron-formation. The auriferous cherty, ankeritic or pyritic chemical sedimentary strata were also formed by similar sea floor exhalative hydrothermal activity. Although seldom of mineable gold content themselves, these constituted important, pre-enriched source rocks for later metamorphic generation of gold veins. Although many of the nickel sulfide and chromite bodies are of magmatic generation, others closely associated with iron-formation, and themselves delicately interbedded with cherty or talc-carbonate laminae, may be due to similar sea floor hydrothermal discharge that accompanied ultramafic extrusive activity. Considering their close spatial and genetic links, the occurrence of any one of these four types of deposit suggests the possibility of the others wherever the favourable Archaean host rocks are present.Different Archaean cratons however, have differing proportions of these four types of deposit, and of their distinctive host rocks. Greenstone belts in all cratons throughout the world contain the iron-formations and gold deposits. Greenstone belts of southern Africa and Western Austrialia, however, have more abundant ultramafic rocks and more important nickel-chrome deposits. Some of them may be older than comparable belts in Canada which contain more rhyodacitic rocks and more important copper-zinc ores. Some belts of Brazil and West Africa may be still younger, contain more pyroclastic-volcaniclastic rocks, lack both the nickel-chrome and copper-zinc ores, but contain important manganese in their iron-formations. These relations suggest worldwide diachroneity of Archaean greenstone belt generation, late-Archaean granitic orogeny and ensuing Proterozoic sedimentation.  相似文献   

17.
We report precise 207Pb/206Pb single zircon evaporation ages for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, and from granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group yield ages between 3445 +/- 3 and 3416 +/- 5 Ma and contain older crustal components represented by a 3504 +/- 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 +/- 5 and 3225 +/- 3 Ma in age which we interpret to reflect the time of crystallization. A surprisingly complex xenocryst population in one sample documents ages from 3323 +/- 4 to 3522 +/- 4 Ma. We suspect that these xenocrysts were inherited, during the passage of the felsic melts to the surface, from various sources such as greenstones and granitoid rocks now exposed in the form of tonalite-trondhjemite plutons along the southern and western margins of the BGB, and units predating any of the exposed greenstone or intrusive rocks. Several of the granitoids along the southern margin of the belt have zircon populations with ages between 3490 and 3440 Ma. coeval with or slightly older than Onverwacht felsic volcanism, while the Kaap Valley pluton along the northwestern margin of the belt is coeval with Fig Tree dacitic volcanism. These results emphasize the comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites. Some of the volcanic plutonic units contain zircon xenocrysts older than any exposed rocks. These indicate the existence of still older units, possibly stratigraphically lower and older portions of the greenstone sequence itself, older granitoid intrusive rocks, or bodies of older, unrelated crustal material. Our data show that the Onverwacht and Fig Tree felsic units have distinctly different ages and therefore do not represent a single, tectonically repeated unit as proposed by others. Unlike the late Archaean Abitibi greenstone belt in Canada, which formed over about 30 Ma. exposed rocks in the BGB formed over a period of at least 220 Ma. The complex zircon populations encountered in this study imply that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones. A surprising similarity in rock types, tectonic evolution, and ages of the BGB in the Kaapvaal craton of southern Africa and greenstones in the Pilbara Block of Western Australia suggests that these two terrains may have been part of a larger crustal unit in early Archaean times.  相似文献   

18.
The occurrence of ultrahigh pressure (UHP) minerals, such as coesite and diamond in crustal rocks in orogenic belts suggests that a huge amount of continental crust can be subducted to man-tle depth during the continental-continental collision[1—6]. This…  相似文献   

19.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

20.
De-Ru  Xu  Bin  Xia  Peng-Chun  Li  Guang-Hao  Chen  Ci  Ma  Yu-Quan  Zhang 《Island Arc》2007,16(4):575-597
Abstract Metabasites within the Paleozoic volcanic‐clastic sedimentary sequences in Hainan Island, South China, show large differences not only in the nature of protoliths, but also in zircon U‐Pb sensitive high mass‐resolution ion microprobe (SHRIMP) ages. The protoliths for the Tunchang area metabasites have intraoceanic arc geochemical affinities. In the east‐central island gabbroic to diabasic rocks and pillow lavas are also present, while the Bangxi area metabasites with back‐arc geochemical affinities in the northwest island consist of basaltic, gabbroic and/or picritic rocks. Three types of zircon domains/crystals in the Tunchang area metabasites are defined. Type 1 is comagmatic and yields concordant to approximately concordant 206 Pb/238 U ages ranging from 442.1 ± 13.7 Ma to 514.3 ± 30.2 Ma with a weighted U‐Pb mean age of 445 ± 10 Ma. Type 2 is inherited and yields a weighted 207 Pb/206 Pb mean age of 2488.1 ± 8.3 Ma. Type 3 is magmatic with a 207 Pb/206 Pb age of ca 1450 Ma. Magmatic zircons in the Bangxi area metabasites yield a weighted U‐Pb mean age of 269 ± 4 Ma. We suggest 450 Ma is the minimum age for crystallization of protoliths of the Tunchang area metabasites, because the age range of ca 440–514 Ma probably corresponds to both the time of igneous crystallization and the high‐temperature overprint. The presence of abundant inherited zircons strongly favors derivation of these rocks from a NMORB‐like mantle proximal to continental crust. A protolith age of ca 270 Ma for the Bangxi area metabasites probably records expansion of an epircontinental back‐arc basin and subsequent generation of a small oceanic basin. The presence of ophiolitic rocks with an age of ca 450 Ma, not only in Hainan Island, but also in the Yangtze block, highlights the fact that the South China Caledonian Orogeny was not intracontinental in nature, but characterized by an ocean‐related event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号