首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Grasslands and agro-ecosystems occupy one-third of the global terrestrial area. However, great uncertainty still exists about their contributions to the global carbon cycle. This study used various com...  相似文献   

2.
Fencing is the most common land-management practice to protect grassland degradation from livestock overgrazing on the Tibetan Plateau. However, it is unclear whether fencing reduces CO_2, CH_4, and N_2O emission. Here, we selected four vegetation types of alpine meadow(graminoid, shrub, forb, and sparse vegetation) to determine fencing effects on ecosystem respiration(Re), CH_4, and N_2O fluxes during the growing season. Despite increased average monthly ecosystem respiration(Re) for fenced graminoid vegetation at the end of the growing season, there was no significant difference between grazing and fencing across all vegetation types. Fencing significantly reduced average CH_4 uptake by about 50% in 2008 only for forb vegetation and increased average N_2O release for graminoid vegetation by 38% and 48% in 2008 and 2009,respectively. Temperature, moisture, total organic carbon, C/N, nitrate, ammonia, and/or bulk density of soil, as well as above-and belowground biomass, explained 19%~71% and 6%~33% of variation in daily and average Re and CH_4 fluxes across all vegetation types, while soil-bulk density explained 27% of variation in average N_2O fluxes. Stepwise regression showed that soil temperature and soil moisture controlled average Re, while soil moisture and bulk density controlled average CH_4 fluxes. These results indicate that abiotic factors control Re, CH_4, and N_2O fluxes; and grazing exclusion has little effect on reducing their emission—implying that climatic change rather than grazing may have a more important influence on the budgets of Re and CH_4 for the Tibetan alpine meadow during the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号