首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tully–Fisher Relationship (TFR) is utilized to identify anomalous redshifts in normal spiral galaxies. Three redshift anomalies are identified in this analysis: (1) several clusters of galaxies are examined, in which late type spirals have significant excess redshifts relative to early-type spirals in the same clusters; (2) galaxies of morphology similar to ScI galaxies are found to have a systematic excess redshift relative to the redshifts expected if the Hubble Constant is 72 km s−1 Mpc−1; (3) individual galaxies, pairs, and groups are identified which strongly deviate from the predictions of a smooth Hubble flow. These redshift deviations are significantly larger than can be explained by peculiar motions and TFR errors. It is concluded that the redshift anomalies identified in this analysis are consistent with previous claims for large non-cosmological (intrinsic) redshifts.  相似文献   

2.
The most accurate data on galaxy types, corrected apparent magnitudes and redshifts as given in the Sandage-TammanRevised Shapley-Ames catalog are analyzed. It is shown that Sb galaxies of the same luminosity class as M31 and M81 define a narrow Hubble relation withH 0=65 –6 +15 km s–1 Mpc–1.In contrast, Sc galaxies deviate strongly towars higher redshift from a linear, log redshift—apparent magnitude relation. Not all this deviation can be selection effect due to increasing volume sampled at increasing redshift (Malmquist bias). Physical associations of groups of galaxies in theRSA Catalog are used to establish the existence of various amounts of excess (non-velocity) redshifts among Sc and allied types of galaxies.Independent distances fromHi line width — luminosity criterion (Tully-Fisher) are analyzed. It is shown that this criterion gives much smaller distances than redshifts do for galaxies which deviate above the Hubble line. Unless the Tully-Fisher relation gives too small distances for more luminous galaxies, this confirms the excess redshift to be intrinsic to the Galaxy. But it is next demonstrated, that for low redshift galaxies, there is no discrepancy between redshift and Tully-Fisher distance even though there is a wide range of absolute magnitudes.If Tully-Fisher distances are accepted, the onlly alternative to having a Hubble constant which increases strongly with distance is to have a component of the higher redshift Sc's contributed by a non-recessional redshift. Streaming motions would have to be large, increase with distance and be always in the receding sence. It is shown here that the Sc's which deviate most from the Hubble relation and have the largest discrepancies with Tully-Filsher distances lie predominantly in the sky toward very nearby groups of galaxies. If they were at these closer distances the discordant galaxies, mostly ScI's, would have dwarfish physical properties but not so unprecedented as the large sizes which result from redshift distances.Finally the interaction of specific high redshift ScI's with nearby galaxies is presented as an independent proof that ScI's are generally small, low luminosity galaxies. This result furnishes insight into the long standing puzzle of how apparently distant ScI's can interact with nearby galaxies such as in Stephan's Quintet, Seyfert's Sextet and NGC 4151/4156.  相似文献   

3.
Evidence from galaxy absolute magnitudes, linear diameters, and HyperLeda images is presented which strongly supports the interpretation that some normal spiral galaxies can contain large non-cosmological (intrinsic) redshifts in excess of 5000 km s−1.  相似文献   

4.
An analysis of the environments around a sample of 28 3CR radio galaxies with redshifts 0.6< z <1.8 is presented, based primarily upon K -band images down to K ∼20 taken using the UK Infrared Telescope (UKIRT). A net overdensity of K -band galaxies is found in the fields of the radio galaxies, with the mean excess counts being comparable to that expected for clusters of Abell Class 0 richness. A sharp peak is found in the angular cross-correlation amplitude centred on the radio galaxies that, for reasonable assumptions about the luminosity function of the galaxies, corresponds to a spatial cross-correlation amplitude between those determined for low-redshift Abell Class 0 and 1 clusters.
These data are complemented by J -band images also from UKIRT, and by optical images from the Hubble Space Telescope . The fields of the lower redshift ( z ≲0.9) radio galaxies in the sample generally show well-defined near-infrared colour–magnitude relations with little scatter, indicating a significant number of galaxies at the redshift of the radio galaxy; the relations involving colours at shorter wavelengths than the 4000 Å break show considerably greater scatter, suggesting that many of the cluster galaxies have low levels of recent or on-going star formation. At higher redshifts the colour–magnitude sequences are less prominent owing to the increased field galaxy contribution at faint magnitudes, but there is a statistical excess of galaxies with the very red infrared colours ( J − K ≳1.75) expected of old cluster galaxies at these redshifts.
Although these results are appropriate for the mean of all of the radio galaxy fields, there exist large field-to-field variations in the richness of the environments. Many, but certainly not all, powerful z ∼1 radio galaxies lie in (proto)cluster environments.  相似文献   

5.
Galaxies of redshiftz ≲ 1000 km s−1 are investigated. In the South Galactic Hemisphere there are two large concentrations of these galaxies. One is in the direction of the centre of the Local Group, roughly aligned with M 31 and M 33. The other concentration is centred almost 80 degrees away on the sky and involves the next nearest galaxies to the Local Group, NGC 55, NGC 300 and NGC 253. The large scale and isolation of these concentrations, and the continuity of their redshifts require that they are all galaxies at the same, relatively close distance of the brightest group members. The fainter members of the group have higher redshifts, mimicking to some extent a Hubble relation. But if they are all at the same average distance the higher redshifts must be due to a cause other than velocity. The redshifts of the galaxies in the central areas of these groups all obey a quantization interval of δcz0 = 72.4 kms−1. This is the same quantization found by William Tifft, and later by others, in all physical groups and pairs which have been tested. The quantization discovered here, however, extends over a larger interval in redshift than heretofore encountered. The majority of redshifts used in the present analysis are accurate to ± 8 km s−1. The deviation of those redshifts from multiples of 72.4 km s-1 averages ±8.2 km s−1. The astonishing result, however, is that for those redshifts which are known more accurately, the deviation from modulo 72.4 drops to a value between 3 and 4 km s−1! The amount of relative velocity allowed these galaxies is therefore implied to be less than this extremely small value.  相似文献   

6.
The Tully–Fisher relationship (TFR) has been shown to have a relatively small observed scatter of ∼±0.35 mag implying an intrinsic scatter < ±0.30 mag. However, when the TFR is calibrated from distances derived from the Hubble relation for field galaxies scatter is consistently found to be ±0.64 to ±0.84 mag. This significantly larger scatter requires that intrinsic TFR scatter is actually much larger than ±0.30 mag, that field galaxies have an intrinsic TFR scatter much larger than cluster spirals, or that field galaxies have a velocity dispersion relative to the Hubble flow in excess of 1000 km s−1. Each of these potential explanations faces difficulties and contradicted by available data and the results of previous studies. An alternative explanation is that the measured redshifts of galaxies are composed of a cosmological redshift component predicted from the value of the Hubble constant and a superimposed intrinsic redshift component previously identified in other studies. This intrinsic redshift component may exceed 5000 km s−1 in individual galaxies. In this alternative scenario a possible value for the Hubble constant is 55–60 km s−1 Mpc−1.  相似文献   

7.
From the COMBO-17 digital sky survey data, 1,231 faint blue galaxies with photometric redshifts of 0.1 < z < 0.3 in the sky region CDFS (Chandra Deep Field South) are selected as the sample. We have studied the distributions of the photometric redshifts of these sample galaxies, in the conditions that the photometric redshifts are obtained respectively by using only optical data and by using both optical and near-infrared data. The results indicate that there are 183 galaxies whose photometric redshifts derived from both optical and infrared data are greater than 1.2, that the rms error of the derived photometric redshifts is 0.046, and that to increase the photometric SNR is also helpful for discriminating those misjudged low-redshift galaxies by using only the optical data. We have studied as well the typical spectral energy distributions (SEDs) of these galaxies in the reference system at rest. It is found that for the high-redshift galaxies the observed near-infrared flux tends to be greater than the optical flux, while for the low-redshift galaxies the observed near-infrared flux tends to be less than the optical flux.  相似文献   

8.
An angular correlation of low significance (2 σ ) is observed between 0.3< z <0.5 QSOs and V 23 galaxies. Overall, the cross-correlation function between 82 intermediate-redshift (0.3< z <0.7) X-ray selected QSOs and V ≲24 galaxies is investigated, but no signal is detected for the z >0.5 QSOs. After converting to an excess of galaxies physically associated with the QSO, this lack of strong correlation is shown to be consistent with the clustering of normal galaxies at the same moderate redshifts. Combined with previous observations, these results imply that the environments of radio-quiet QSOs do not undergo significant evolution with respect to the galaxy population over a wide range of redshifts (0< z <1.5). This is in marked contrast to the rapid increase in the richness of the environments associated with radio-loud QSOs over the same redshift range.  相似文献   

9.
We discuss the distribution of radial velocities of galaxies belonging to the Local Group. Two independent samples of galaxies as well as several methods of reduction from the heliocentric to the galactocentric radial velocities are explored. We applied the power spectrum analysis using the Hann function as a weighting method, together with the jackknife error estimation. We performed a detailed analysis of this approach. The distribution of galaxy redshifts seems to be non‐random. An excess of galaxies with radial velocities of ∼24 km s–1 and ∼36 km s–1 is detected, but the effect is statistically weak. Only one peak for radial velocities of ∼24 km s–1 seems to be confirmed at the confidence level of 95%. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
It is argued that accreting supermassive black holes ejected from centers of galaxies are the likely models for the quasars observed in association with galaxies. Also pointed out are the implications of a recent suggestion by Horák (1982) to account for the excess redshifts of such quasars due to a combined effect of peculiar Doppler-motion and the gravitational field.  相似文献   

11.
We have discovered a population of extremely red galaxies at z  ≃ 1.5 which have apparent stellar ages of ≳ 3 Gyr, based on detailed spectroscopy in the rest-frame ultraviolet. In order for galaxies to have existed at the high collapse redshifts indicated by these ages, there must be a minimum level of power in the density fluctuation spectrum on galaxy scales. This paper compares the required power with that inferred from other high-redshift populations: damped Lyα absorbers and Lyman-limit galaxies at z  ≃ 3.2. If the collapse redshifts for the old red galaxies are in the range z c ≃ 6–8, there is general agreement between the various tracers on the required inhomogeneity on 1-Mpc scales. This level of small-scale power requires the Lyman-limit galaxies to be approximately ν ≃ 3.0 fluctuations, implying a very large bias parameter b  ≃ 6. If the collapse redshifts of the red galaxies are indeed in the range z c = 6–8 required for power spectrum consistency, their implied ages at z  ≃ 1.5 are between 3 and 3.8 Gyr for essentially any model universe of current age 14 Gyr. The age of these objects as deduced from gravitational collapse thus provides independent support for the ages estimated from their stellar populations. Such early-forming galaxies are rare, and their contribution to the cosmological stellar density is consistent with an extrapolation to higher redshifts of the star formation rate measured at z  < 5; there is no evidence for a general era of spheroid formation at extreme redshifts.  相似文献   

12.
The current status of a continuing programme of tests for redshift periodicity or ‘quantization’ of nearby bright galaxies is described. So far the redshifts of over 250 galaxies with high-precision HI profiles have been used in the study. In consistently selected sub-samples of the datasets of sufficient precision examined so far, the redshift distribution has been found to be strongly quantized in the galactocentric frame of reference. The phenomenon is easily seen by eye and apparently cannot be ascribed to statistical artefacts, selection procedures or flawed reduction techniques. Two galactocentric periodicities have so far been detected, ∼ 71 .5km s-1 in the Virgo cluster, and ∼37. 5km s-1 for all other spiral galaxies within ∼ 2600km s-1. The formal confidence levels associated with these results are extremely high.  相似文献   

13.
The evolution of the Star Formation Rate (SFR) density of the Universe as a function of look-back time is a fundamental parameter in order to understand the formation and evolution of galaxies. The current picture, only outlined in the last years, is that the global SFR density has dropped by about an order of magnitude from a redshift of z∼1.5 to the current value at z=0. Because these SFR density studies are now extended to the whole range in redshift, it becomes mandatory to combine data from different SFR tracers. At low redshifts, optical emission lines are the most widely used. Using Hα as current-SFR tracer, the Universidad Complutense de Madrid (UCM) Survey provided the first estimation of the global SFR density in the Local Universe. The Hα flux in emission is directly related to the number of ionizing photons and, modulo IMF, to the total mass of stars formed. Metallic lines like [OII]λ3727 and [OIII]λ5007 are affected by metallicity and excitation. Beyond redshifts z∼0.4, Hα is not observable in the optical and [OII]λ3727 or UV luminosities have to be used. The UCM galaxy sample has been used to obtain a calibration between [OII]λ3727 luminosity and SFR specially suitable for the different types of star-forming galaxies found by deep spectroscopic surveys in redshifts up to z∼1.5. These calibrations, when applied to recent deep redshift surveys confirm the drop of the SFR density of the Universe since z∼1 previously infered in the UV. However, the fundamental parameter that determines galactic evolution is mass, not luminosity. The mass function for local star-forming galaxies is critical for any future comparison with other galaxy populations of different evolutionary status. Hα velocity-widths for UCM galaxies indicate that besides a small fraction of 1010-1011 M starburst nuclei spirals, the majority have dynamical masses in the ∼109 M range. A comparison with published data for faint blue galaxies suggests that star-forming galaxies at z∼1 would have SFR per unit mass and burst strengths similar to those at z=0, but being intrinsically more massive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We study the nature of faint blue compact galaxies (BCGs) at redshifts z ∼ 0.2 - 1.3 using Keck and HST. Despite being very luminous (LB ∼ L*), most distant BCGs have masses M ∼ 1010M, i.e., they are dwarf stellar systems. The majority of these galaxies have colors, sizes, surface brightnesses, luminosities, velocity widths, excitations, star formation rates (SFR), and mass-to-light ratios characteristic of the most luminous nearby HII galaxies. The more massive BCGs form a more heterogeneous class of evolved starburst, similar to local disk starburst galaxies. Without additional star formation, HII-like BCGs will most likely fade to resemble today's spheroidal galaxies such as NGC 205. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present a comparison between the published optical, infrared (IR) and CO spectroscopic redshifts of 15 (sub)mm galaxies and their photometric redshifts as derived from long-wavelength (radio–mm–far-IR) photometric data. The redshift accuracy measured for 12 submillimetre (submm) galaxies with at least one robustly determined colour in the radio–mm–far-IR regime is  δ z ≈ 0.30 (rms)  . Despite the wide range of spectral energy distributions in the local galaxies that are used in an unbiased manner as templates, this analysis demonstrates that photometric redshifts can be efficiently derived for submm galaxies with a precision of  δ z < 0.5  using only the rest-frame far-IR to radio wavelength data.  相似文献   

16.
从COMBO-17数字巡天数据里,选择了CDFS(Chandra Deep Field South)天区中1231个测光红移在0.1~0.3之间的暗蓝星系作为样本,研究了这些星系分别在只有光学波段和光学加近红外波段数据情况下做测光红移得到的红移分布,以及这些星系在静止参考系下的能谱分布(Spectral Energy Distributions,SEDs)特征.结果表明有183个星系在利用光学加近红外波段数据做测光红移时得到的红移大于1.2,它们的误差为0.046,提高测光的信噪比也有利于区分这类被光学波段误认为低红移的星系.这些暗蓝星系中高红移星系的观测近红外流量相对于光学流量有上升的趋势,而低红移星系的观测近红外流量相对于光学流量有下降的趋势.  相似文献   

17.
The excess number of blue galaxies at faint magnitudes is a subject of much controversy. Recent Hubble Space Telescope results have revealed a plethora of galaxies with peculiar morphologies tentatively identified as the evolving population. We report the results of optical spectroscopy and near-infrared photometry of a sample of faint HST galaxies from the Medium Deep Survey to ascertain the physical properties of the faint morphological populations. We find four principal results. First, the population of objects classified as 'peculiar' are intrinsically luminous in the optical ( M B  ∼ −19). Secondly these systems tend to be strong sources of [O  II ] line luminosity. Thirdly the optical–infrared colours of the faint population (a) confirm the presence of a population of compact   blue galaxies and (b) show the stellar populations of irregular/peculiar galaxies encompass a wide range in age. Finally a surface-brightness comparison with the local galaxy sample of Frei et al. shows that these objects are not of anomalously low surface brightness, rather we find that all morphological classes have evolved to a higher surface brightness at higher redshifts ( z  > 0.3).  相似文献   

18.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

19.
We use K '-band (2.1-μm) imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1≤ z ≤1.4. Two radio galaxies appear to be undergoing mergers, another contains, within a single envelope, two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K band.
Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radio-luminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K -band luminosity of the 3CR galaxies reflects a difference in the size of the host galaxies, and not solely a difference in the power of the active nuclei.
The size–luminosity relation of the z ∼1.1 6C galaxies indicates a 1.0–1.6 mag enhancement of their rest frame R -band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z <0.2. The 3CR galaxies at z ∼1.1 show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L ∼ L * luminosity, and is consistent with their low-redshift counterparts being relatively small FRII galaxies ∼25 times lower in radio luminosity, or small FRI galaxies ∼1000 times lower in radio luminosity. Hence the 6C radio galaxies appear to undergo as much optical and radio evolution as the 3CR galaxies.  相似文献   

20.
The observational investigation of the evolution of the star formation activities of early-type galaxies (ETGs) with redshifts helps us to understand the formation and evolution of this kind of galaxies. Combined with the highresolution images from HST/ACS (Hubble Space Telescope/Advanded Camera for Surveys) of the GEMS (Galaxy Evolution fromMorphology and SEDs) survey and the multi-band data from Spitzer, GALEX (Galaxy Evolution Explorer) and so on in the CDFS (Chandra Deep Field South) field, a complete sample including 456 ETGs with their redshifts in the range of 0.2 ≤ z ≤ 1.0 is selected on the basis of morphology, color and stellar mass. By using the stacking technique, the ultraviolet and infrared average luminosities of sample galaxies are measured, and the star formation rates of ETGs are estimated. The results indicate that the star formation rates of ETGs are relatively low (< 3 M yr−1) and decrease with decreasing redshifts. The mass contributed by the star formation since z = 1 is less than 15%. The analyses of stellar populations also confirm that the bulk of the population of massive ETGs was formed in the early universe (z > 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号