首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several thousand aftershocks of the August 1, 1975 Oroville, California, earthquake (ML = 5.7) were recorded by an 8-station field-seismic network. Focal coordinates of 104 of these events were fitted by least-squares to a plane striking N07°W and dipping 59°W; the strike (but not the dip) of this plane is in good agreement with that (N09°W) obtained from a fault-plane solution for a large foreshock 8 sec before the main shock, and it agrees fairly well with the trend (N15°W) of structural lineaments in the vicinity of Lake Oroville. The surface trace of the plane of foci passes through the Oroville Dam, as well as through surface cracking 12 km south of the dam. The main shock occurred 7 years after the filling of Lake Oroville, but only a month after the most rapid filling since 1968. The rate of aftershock occurrence during the first month decayed approximately as1/t. Event duration was measured for more than 2,000 aftershocks during August and September; average log-duration, taken over samples of 100 events, decreased gradually during this period. Close-in spectra obtained from strong-motion recordings of several of the larger aftershocks have corner frequencies that are quite high compared to other western U.S. earthquakes of similar magnitude. The Oroville earthquakes had several features in common with another Sierra Nevada earthquake sequence, near Truckee, California, in September, 1966.  相似文献   

2.
Based on the aftershock sequence of the Great Wenchuan earthquake that occurred on 12 May, 2008, the long-term memory and multifractal scaling are analyzed by using MF-DFA method. And we consider aftershocks as a SOC phenomenon. Main findings are as follows: (1) hq values of the aftershock sequence indicates high persistence or long-term memory. (2) The generalized fractal dimensions D(q) presents obvious trend variation, which reveal crisis and critical characteristics of seismogenic dynamical system. (3) The right-skewed spectrum f(α) indicates that the aftershocks are predominated by low magnitude, which gives a characterization of distribution in multiple scales in seismic activity. Its structural morphology is closely related with the dynamical complexity. (4) Aftershock sequence exhibits self-organized criticality because it follows the classical Gutenberg-Richter and Omori Law.  相似文献   

3.
Poroelastic relaxation and aftershocks of the 2001 Bhuj earthquake, India   总被引:1,自引:0,他引:1  
We analyse aftershocks of the 26 January 2001 Bhuj earthquake, India, that were recorded for 10 weeks following the mainshock. We calculate undrained or instantaneous pore pressure and change in Coulomb stress due to the earthquake and their poroelastic relaxation in the following 10 weeks period. Almost all aftershocks occurred in the region of coseismic dilatation. In the subsequent period, pore pressure increased through relaxation in the dilatation region which further modified coseismic Coulomb stress. Maximum increase in pore pressure is estimated to be about 0.7 MPa in 60 days time following the mainshock. Correlation between the zones of increased pore pressure and postseismic Coulomb stress with that of aftershocks, suggests a definite role of fluid diffusion in their delayed triggering.  相似文献   

4.
A moderately large earthquake (for South Australia) with magnitude ML = 4.6 occurred in the mid‐north near Spalding on January 7, 1971 (January 6, G.M.T.). It caused minor damage and was felt up to 80 km from the epicentre. Four aftershocks were located and another four events are inferred to have been associated with this sequence.  相似文献   

5.
The Mw 9.0 Tohoku-Oki earthquake that occurred off the Pacific coast of Japan on March 11, 2011, was followed by thousands of aftershocks, both near the plate interface and in the crust of inland eastern Japan. In this paper, we report on two large, shallow crustal earthquakes that occurred near the Ibaraki-Fukushima prefecture border, where the background seismicity was low prior to the 2011 Tohoku-Oki earthquake. Using densely spaced geodetic observations (GPS and InSAR datasets), we found that two large aftershocks in the Iwaki and Kita-Ibarake regions (hereafter referred to as the Iwaki earthquake and the Kita-Ibarake earthquake) produced 2.1 m and 0.44 m of motion in the line-of-sight (LOS), respectively. The azimuth-offset method was used to obtain the preliminary location of the fault traces. The InSAR-based maximum offset and trace of the faults that produced the Iwaki earthquake are consistent with field observations. The fault location and geometry of these two earthquakes are constrained by a rectangular dislocation model in a multilayered elastic half-space, which indicates that the maximum slips for the two earthquakes are 3.28 m and 0.98 m, respectively. The Coulomb stress changes were calculated for the faults following the 2011 Mw 9.0 Tohoku-Oki earthquake based on the modeled slip along the fault planes. The resulting Coulomb stress changes indicate that the stresses on the faults increased by up to 1.1 MPa and 0.7 MPa in the Iwaki and Kita-Ibarake regions, respectively, suggesting that the Tohoku-Oki earthquake triggered the two aftershocks, supporting the results of seismic tomography.  相似文献   

6.
四川芦山余震序列空间格局分析   总被引:1,自引:0,他引:1  
以芦山3级以上余震数据为基础,运用GIS等方法对余震空间格局进行了研究。结果表明:1.点格局的最邻近指数为0.72,偏离随机分布,暗示余震分布具有一定聚集性:芦山、宝兴、天全是余震分布的中心区域,占总余震的87%,高震级余震也多发于此;2.距离关联维分析表明,余震在2.5~10.5km、17~22km区间内关联程度显著;32~35.5km、36~40km区间也存在关联特征,该结果与地震烈度区长短半轴、地震破裂面长度较为吻合。研究探索了余震空间点格局,对分析、判断余震特征和灾害预防具有借鉴意义。  相似文献   

7.
Aftershocks of the September 16, 1978 Tabas earthquake located from close-in observations made during a four-week fielding of temporary stations have been analyzed for the purpose of delineating detailed source geometry of the 1978 earthquake. Spatial distribution of aftershocks and their composite focal mechanism suggest that the geometry of faulting is far from planar. Aftershocks define two prominent alignment. The southern alignment strikes E-W to WNW-ESE, whereas the northern alignment strikes in a N-S to NNW-SSE direction with an abrupt change of nearly 55–60 degrees near 33.4°N latitude. Both field observations of surface faulting pattern and systematic variation of principal directions of stress axes computed from aftershock focal mechanisms are consistent with the upthrusting and imbrication of a wedge shaped crustal block with the wedge angle of about 120 degrees. Both geological and seismological evidence suggest that the deformed zone is truncated at the southern edge by preexisting E-W fault structures. New observations may provide a partial answer to the unexplained farfield asymmetry of the long period Rayleigh wave radiation pattern recently observed for the mainshock across IDA network.  相似文献   

8.
The quantitative parameters of the self-similarity of the aftershocks of the Japanese earthquake on March 11, 2011 were obtained. The parameters p in the Omori law (1.06), b in the Gutenberg-Richter law (0.61), and the fractal dimension (D) of the earthquake epicenters (1.52) were determined. Self-similarity is manifested in a range of two orders of temporal and spatial scales and four units of magnitude. The stability in time of parameter p and spatial variations in b and p parameters were revealed.  相似文献   

9.
10.
M 《Tectonophysics》2004,387(1-4):65-79
Broadband data from the Greek National Seismological Network are used to study the moderate size (M5.5) earthquake, which occurred on 2 December 2002 near the town of Vartholomio, in western Peloponnese (Greece). Time domain moment tensor inversion applied to retrieve the focal mechanism of the mainshock and of three of the larger aftershocks of the sequence, revealed almost pure strike-slip faulting along NW–SE or NE–SW trending nodal planes. The relative source time functions for the mainshock, obtained from an empirical Green's function analysis, do not reveal any clear directivity to any of the stations. A careful observer might suggest directivity towards NW, if any. Optimum values are 0.4 s for the rise time and 2.7 km/s for the rupture velocity. The spatial and temporal distribution of fault slip showed that the major part of the resolved slip occurred beneath the mainshock's epicenter, 20 km underneath the western coast of Peloponnese. This probably accounts for the considerable damage observed to the nearby towns. The resolution between the two nodal planes does not permit an identification of the fault plane; however the statistics on the slip distribution model, the preliminary analysis of aftershock locations and macroseismic data favour the NW–SE trending plane as the fault plane, which is connected with sinistral strike-slip motions. These are the first implications for sinistral strike-slip motions in this area and more data are needed in the future to get more reliable resolution of the motions.  相似文献   

11.
The site amplification is estimated at five seismic stations of the Latur region using the horizontal to vertical spectral ratios of 33 aftershocks of the main Killari earthquake of September 29, 1993 (UTC). Spectral amplifications, ranging from a factor of 2–6 are found to vary with frequency at different places. Significant amplification is found at four sites within the Latur region, at Basavakalyan, Kasgi, Killari, and Mudgad Eakoji villages. Our results show a positive correlation between the site amplification and the damage pattern in area. The pattern and the nature of the site amplification estimated in the present study corroborates also with the analytical models and the borehole data indicating alternating layers of unconsolidated sediments and basaltic rocks.  相似文献   

12.
13.
The Killari earthquake of September 29, 1993 (Mw=6.2) in peninsular India triggered several aftershocks that were recorded by a network of 21 stations. We computed the change in regional static stress caused by coseismic slip on the earthquake rupture and correlated it with the aftershocks with a view to constrain some of the rupture parameters of this earthquake. We evaluated the six available estimates of fault plane solutions for this earthquake and concluded that reverse slip on a 42° dipping, N112° trending fault, which extends up to the surface from a depth of 7 km, produces maximum correlation between the increased static stress and aftershock distribution. Our analysis suggests that the majority of coseismic slip occurred on the part of the rupture that lies in the depth range of 3–6.5 km.  相似文献   

14.
176 vertical-component, short period observations from aftershocks of the Mw 7.7, 26 January, 2001 Kachchh earthquake are used to estimate seismic wave attenuation in western India using uniform and two layer models. The magnitudes (Mw) of the earthquakes are less than 4.5, with depths less than 46 km and hypocentral distances up to 110 km. The studied frequencies are between 1 and 30 Hz. Two seismic wave attenuation factors, intrinsic absorption (Qi− 1) and scattering attenuation (Qs− 1) are estimated using the Multiple Lapse Time Window method which compares time integrated seismic wave energies with synthetic coda wave envelopes for a multiple isotropic scattering model. We first assume spatial uniformity of Qi− 1, Qs− 1 and S wave velocity (β). A second approach extends the multiple scattering hypothesis to media consisting of several layers characterized by vertically varying scattering coefficient (g), intrinsic absorption strength (h), density of the media (ρ) and shear wave velocity structure. The predicted coda envelopes are computed using Monte Carlo simulation. Results show that, under the assumption of spatial uniformity, scattering attenuation is greater than intrinsic absorption only for the lowest frequency band (1 to 2 Hz), whereas intrinsic absorption is predominant in the attenuation process at higher frequencies (2 to 30 Hz). The values of Q obtained range from Qt = 118, Qi = 246 and Qs = 227 at 1.5 Hz to Qt ≈ 4000, Qi ≈ 4600 and Qs ≈ 33,300 at 28 Hz center frequencies, being Qt− 1 a measure of total attenuation. Results also show that Qi− 1, Qs− 1 and Qt− 1 decrease proportional to fν. Two rates of decay are clearly observed for the low (1 to 6 Hz) and high (6 to 30 Hz) frequency ranges. Values of ν are estimated as 2.07 ± 0.05 and 0.44 ± 0.09 for total attenuation, 1.52 ± 0.21 and 0.48 ± 0.09 for intrinsic absorption and 3.63 ± 0.07 and 0.06 ± 0.08 for scattering attenuation for the low and high frequency ranges, respectively. Despite the lower resolution in deriving the attenuation parameters for a two layered crust, we find that scattering attenuation is comparable to or smaller than the intrinsic absorption in the crust whereas intrinsic absorption dominates in the mantle. Also, for a crustal layer of thickness 42 km, intrinsic absorption and scattering estimates in the crust are lower and greater than those of the mantle, respectively.  相似文献   

15.
On August 20, 1852, an earthquake caused widespread destruction in the city of Santiago de Cuba and its surroundings. A comprehensive search for contemporary documentation was made. The information gathered was used for a detailed analysis of the damage from and characteristics of the earthquakes. Intensities were evaluated at 45 localities, and an isoseismal scheme has been drawn. Maximum intensity reached 8 degrees (MSK), and 6.4 was the estimated magnitude. Damage to the city of Santiago de Cuba has been studied in detail. The low quality of construction aggravated the damage. The total number of casualties was two dead and approximately 200 injured. The shock was felt within 80,000 km2. The epicenter was determined as 19.75º N, 75.32º W, h = 30 km. This study shows that contemporary Cuban documents must be studied with care in their historical and cultural background to avoid overestimating earthquake intensities.  相似文献   

16.
The goal of the present work is to reconstruct some features of the May 6, 1976, Friuli earthquake in different sites of the area involved. The starting data for the elaboration are: seismograms of aftershocks at various sites; very detailed geological knowledge of the sites; accelerographs of the main shocks at Tolmezzo. Only aftershocks having magnitudes 2.5–4 and epicentres located within the most damaged area were considered. Fourier and response spectra for the events considered at the sites were computed. The problem is to establish the differences between, on the one hand, the Fourier and response spectra of the main shock, and on the other hand the aftershocks. Since one of these sites (Peonis) has about the same conditions (topography, geology, epicentral distance for the May 6 shock) as Tolmezzo, similarity in shaking and the shape of the spectra were assumed at the two sites for the main shock. On the basis of the known mean spectral ratios (computed on the aftershocks) between Peonis and the other sites, and the same ratio between the main shock and the aftershocks at Peonis, the spectral features of the May 6 shock at all the other sites were computed.  相似文献   

17.
A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated.The epicenters for four large (M 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58° or 73°, respectively. A preferred nodal-plane dip of 36° was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required.  相似文献   

18.
A catalogue of aftershocks of the 2007 Nevelsk earthquake (M w = 6.2) was prepared on the basis of the data from the local network of digital seismic stations established on the southern part of Sakhalin Island. The parameters of the aftershock hypocenters were determined using the method of the seismic wave travel time inversion. The errors in the determination of the coordinates of the seismic events were analyzed. The particularities of the spatiotemporal distribution of the aftershocks in the source zone of the earthquake were established. It was shown that a strong aftershock was a subsource earthquake with its own source zone. This explains the disagreement between the energetic characteristics and the size of the aftershock zone of the Nevelsk earthquake.  相似文献   

19.
Focal mechanism solution of the 27th August 2009 earthquake (mb?=?4.0) that occurred in the Badr area, northwest of Saudi Arabia, approximately 50?km from the Red Sea has been determined from the P-wave first motion polarities. Results show normal faulting mechanism with a negligible component of strike-slip motion with NE T-axis direction. This type of mechanism is common with other earthquakes of the northwestern Saudi Arabia and is considered to present the tectonic movement of the region. The dominantly extensional tectonic regime in this province demonstrates the influence of NE extension in the Red Sea. The strikes of the solution are consistent with those of the main faults near the epicenter. Hypocentral location of this earthquake was carried out using the data from the King Abdulaziz City of Science and Technology Seismic Network, Saudi Arabia, and the Egyptian National Seismological Network, Egypt. The horizontal and vertical confidence estimates are 0.5?km for both. The local magnitude, M L, following the Richter??s original definition was also derived from ten digital three-component broadband seismograms. The average local magnitude determined in this study is 3.8?±?0.17. The estimated seismic moment of this event is $ {3}.{\hbox{7e}} + {14}\,{\hbox{Nm}}\left( {{M_{\rm{W}}} = {3}.{66}\pm 0.0{7}} \right) $ .  相似文献   

20.
《Tectonophysics》1987,135(4):289-296
The total inversion algorithm (Tarantola and Valette, 1982) is applied to a set of focal mechanisms corresponding to the aftershocks of the southern Italy November 23, 1980 earthquake (Ms = 6.9), and the elements of several stress tensors are computed. The obtained complex distribution of stress for this region is analyzed, and two zones around the main event, corresponding to areas of tension and compression distributed at different depths, are delimited. A stress tensor was sought for a third region, corresponding to events which occurred along the strike of the main event and with magnitudes greater than 2.2, but with ambiguous results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号