首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognizing the heterogeneity of hydraulic conductivity and hyporheic flow is critical for understanding contaminant transfer and biogeochemical and hydrological processes involving streams and aquifers. In this study, the heterogeneity of hydraulic conductivity and Darcian flux in a submerged streambed and its adjacent exposed stream banks were investigated in the Beiluo River, northwest China. In the submerged streambed, Darcian flux was estimated by measurement of vertical hydraulic conductivity (K v) and vertical head gradient (VHG) using in-situ permeameter tests. On exposed stream banks, both horizontal hydraulic conductivity (K h) and K v were measured by on-site permeameter tests. In the submerged streambed, K v values gradually decreased with depth and the higher values were concentrated in the center and close to the erosional bank. Compared to the exposed stream banks, the K v values were higher in the streambed. From stream stage to the topmost layer of tested sediment, through increasing elevation, the K h values increased on the erosional bank, while they decreased on the depositional bank. The values of VHG along the thalweg illustrate that downwelling flux occurred in the deepest area while upwelling flux appeared in the other areas, which might result from the change of streambed elevation. The higher value of the Darcian flux in the submerged streambed existed near the erosional bank.  相似文献   

2.
The mode of channel‐bend transformation (i.e. expansion, translation, rotation or a combination thereof) has a direct bearing on the dimensions, shape, bedding architecture and connectivity of point‐bar sandstone bodies within a fluvial meander belt, but is generally difficult to recognize in vertical outcrops. This study demonstrates how the bend transformation mode and relative rate of channel‐floor aggradation can be deciphered from longitudinal outcrop sections aligned parallel to the meander‐belt axis, as a crucial methodological aid to the reconstruction of ancient fluvial systems and the development of outcrop analogue models for fluvial petroleum reservoirs. The study focuses on single‐storey and multi‐storey fluvial meander‐belt sandstone bodies in the Palaeogene piggyback Boyabat Basin of north‐central Turkey. The sandstone bodies are several hundred metres wide, 5 to 40 m thick and encased in muddy floodplain deposits. The individual channel‐belt storeys are 5 to 9 m thick and their transverse sections show lateral‐accretion bed packages representing point bars. Point bars in longitudinal sections are recognizable as broad mounds whose parts with downstream‐inclined, subhorizontal and upstream‐inclined bedding represent, respectively, the bar downstream, central and upstream parts. The inter‐bar channel thalweg is recognizable as the transition zone between adjacent point‐bar bedsets with opposing dip directions into or out of the outcrop section. The diverging or converging adjacent thalweg trajectories, or a trajectory migrating in up‐valley direction, indicate point‐bar broadening and hence channel‐bend expansion. A concurrent down‐valley migration of adjacent trajectories indicates channel‐bend translation. Bend rotation is recognizable from the replacement of a depositional riffle by an erosional pool zone or vice versa along the thalweg trajectory. The steepness of the thalweg trajectory reflects the relative rate of channel‐floor aggradation. This study discusses further how the late‐stage foreland tectonics, with its alternating pulses of uplift and subsidence and a progressive narrowing of the basin, has forced aggradation of fluvial channels and caused vertical stacking of meander belts.  相似文献   

3.
Significant spatial variability of water fluxes may exist at the water-sediment interface in river channels and has great influence on a variety of water issues. Understanding the complicated flow systems controlling the flux exchanges along an entire river is often limited due to averaging of parameters or the small number of discrete point measurements usually used. This study investigated the spatial pattern of the hyporheic flux exchange across a river transect in China, using the heat tracing approach. This was done with measurements of temperature at high spatial resolution during a 64-h monitoring period and using the data to identify the spatial pattern of the hyporheic exchange flux with the aid of a one-dimensional conduction-advection-dispersion model (VFLUX). The threshold of neutral exchange was considered as 126 L m?2 d?1 in this study and the heat tracing results showed that the change patterns of vertical hyporheic flux varied with buried depth along the river transect; however, the hyporheic flux was not simply controlled by the streambed hydraulic conductivity and water depth in the river transect. Also, lateral flow dominated the hyporheic process within the shallow high-permeability streambed, while the vertical flow was dominant in the deep low-permeability streambed. The spatial pattern of hyporheic exchange across the river transect was naturally controlled by the heterogeneity of the streambed and the bedform of the stream cross-section. Consequently, a two-dimensional conceptual illustration of the hyporheic process across the river transect is proposed, which could be applicable to river transects of similar conditions.  相似文献   

4.
平沟矿区山西组潮控三角洲—河流沉积及聚煤特点   总被引:3,自引:0,他引:3  
通过野外和室内研究,提出山西组形成于河流—潮控三角洲环境。河流沉积包括辫状曲流河和高弯度曲流河。潮控三角洲以潮汐沉积发育为标志,潮汐沙坝、潮河道构成其沉积骨架,揭示了沉积期仍受海水内泛影响。煤聚积发生在河道岸后边缘沼泽环境、废弃潮汐沙坝上发育起来的潮坪环境及分流间湾充填变浅形成的泥炭沼泽环境。总结了不同沉积环境的聚煤特点。  相似文献   

5.
This paper presents streambed hydraulic conductivities of the Platte River from south-central to eastern Nebraska. The hydraulic conductivities were determined from river channels using permeameter tests. The vertical hydraulic conductivities (K v ) from seven test sites along this river in south-central Nebraska belong to one statistical population. Its mean value is 40.2 m/d. However, the vertical hydraulic conductivities along four transects of the Ashland test site in eastern Nebraska have lower mean values, are statistically different from the K v values in south-central Nebraska, and belong to two different populations with mean values of 20.7 and 9.1 m/d, respectively. Finer sediments carried from the Loup River and Elkhorn River watersheds to the eastern reach of the Platte River lowers the vertical hydraulic conductivity of the streambed. Correlation coefficients between water depth and K v values along a test transect indicates a positive correlation – a larger K v usually occurs in the part of channel with deeper water. Experimental variograms derived from the vertical hydraulic conductivities for several transects across the channels of the Platte River show periodicity of spatial correlation, which likely result from periodic variation of water depth across the channels. The sandy to gravelly streambed contains very local silt and clay layers; spatially continuous low-permeability streambed was not observed in the river channels. The horizontal hydraulic conductivities were larger than the vertical hydraulic conductivities for the same test locations.  相似文献   

6.
河床水力传导度及其各向异性的测定   总被引:2,自引:0,他引:2       下载免费PDF全文
采用直接测定法观测了黑河中游段河床水力传导度及其各向异性,结果表明:河床水力传导度不仅存在较强的各向异性,而且存在空间尺度上的变异性.河床中心位置在垂直、水平和θ=30°方向的平均水力传导度分别为0.45、22.49和1.71 m/d,河床边分别为5.95、29.69、16.80 m/d.在同一测点,水力传导度随着与水平方向的夹角增大呈幂函数曲线下降.试验结果表明河床边是河水的主要渗漏区,并且以侧渗为主.  相似文献   

7.
Modern fluvial meander plains exhibit complex planform transformations in response to meander‐bend expansion, downstream migration and rotation. These transformations exert a fundamental control on lithology and reservoir properties, yet their stratigraphic record has been poorly evaluated in ancient examples due to the lack of extensive three‐dimensional exposures. Here, a unique exhumed meander plain exposed to the north of Scarborough (Yorkshire, UK) is analysed in terms of architecture and morphodynamics, with the aim of developing a comprehensive model of facies distribution. The studied outcrop comprises tidal platforms and adjacent cliffs, where the depositional architecture of un‐tilted deposits was assessed on planform and vertical sections, respectively. In its broader perspective, this study demonstrates the potential of architectural mapping of extensive planform exposures for the reconstruction of ancient fluvial morphodynamics. The studied exhumed meander plain is part of the Scalby Formation of the Ravenscar Group, and originally drained small coastal incised valleys within the Jurassic Cleveland Basin. The meander plain is subdivided into two storeys that contain in‐channel and overbank architectural elements. In‐channel elements comprise expansional and downstream‐migrating point bars, point‐bar tails and channel fills. Overbank elements comprise crevasse complexes, levées, floodplain fines and lake fills. The evolution of the point bars played a significant role in dictating preserved facies distributions, with high flood‐stage nucleation and accretion of meander scrolls later reworked during waning flood‐stages. At a larger scale, meander belt morphodynamics were also a function of valley confinement and contrasts in substrate erodibility. Progressive valley infilling decreased the valley confinement, promoting the upward transition from prevalently downstream migrating to expansional meander belts, a transition associated with enhanced preservation of overbank elements. Strikingly similar relations between valley confinement, meander‐bend transformations and overbank preservation are observed in small modern meandering streams such as the Beaver River of the Canadian prairies and the Powder River of Montana (USA).  相似文献   

8.
A series experiments are conducted to investigate the effects of streambed profile on the erosion and deposition of debris flows. It is found that straight channel can increase the run out of debris flows by 10–25%, compared to that of surfaces without channels, and that travel distance was positively correlated with the hydraulic radius of the channel. In addition, the presence of straight channels caused the volume of debris flow deposition to become normally distributed with respect to travel distance. In the case of curved channels, increases in the sinuosity index resulted in significant blockage and obstruction. In the deposition zone, the maximum deposition volume for a channel with a comparatively low sinuosity index (1.05) was <?50% of the minimum deposition volume for a straight channel. Furthermore, the channel curvature affected not only the positions of deposition peaks along the travel distance but also the debris flow magnitudes in each unit interval (0.5 m). This study demonstrates the effects of differences in channel morphology on the erosional and depositional processes of gully debris flows. These findings are of significant importance for guiding debris flow risk assessment and for the restoration and reconstruction of downstream regions.  相似文献   

9.
A miniature, 9 m-wide floodplain, developed along a gravel-washing effluent stream, shows features such as levées, crevasse splays and floodbasins which compare with their larger-scale counterparts. For sediments deposited overbank, median size decreases exponentially with distance from the channel whilst sorting increases, with coarser sediment on the outside of a meander bend. Overbank flows are only a few grain diameters in depth near the channel. This study shows potentially useful systematic relationships in floodplain sediment textures, but it involves only one of a possible variety of floodplain types dominated by overbank sedimentation. This suggests that further exploration of overbank depositional processes is desirable as an aid to field interpretation.  相似文献   

10.
A dynamic mathematical model for simulation of sedimentation in meandering streams is briefly described. This is composed of component mathematical models which are formulated to predict the following aspects of the system for a given physical situation and a single time increment. (1) The characteristics of the plan form of the meander; (2) the movement of the meander in plan, and definition of cross-sections across the meander in which erosion and deposition are considered in detail; (3) the hydraulic properties of the channel in the bend and the erosional and depositional activity within the channel as defined in specific cross-sections; (4) the nature and occurrence of cut-off; (5) a relative measure of the discharge during a seasonal high water period, which is used in (3) and (4); (6) aggradation. The model, in the form of a FORTRAN IV computer program, has been used to simulate various aspects of sedimentation in meandering streams by performing a set of experiments with the program under different input conditions. The geometry of simulated point bar sediments, as controlled by channel migration over floodplains with variable sediment type, agrees broadly with the natural situation, however extensive sheets of point bar sediment cannot be simulated because large scale meander-belt movements are not accounted for. In the simulated sediments, successive surfaces of the point bar before falling stage deposition (lateral and vertical) may be picked out, and these delineate the epsilon cross-stratification of Allen (1963b). The epsilon unit thickness is that measured from bankfull stage down to the lowest channel position existing prior to deposition. The model records the characteristic fining upwards of grain sizes in the point bar, and the systematic distribution of sedimentary structures. Channel migration combined with seasonal scouring and filling across the channel section produces a characteristic relief in the basal scoured surfaces and facies boundaries (as defined by variation in grain size and sedimentary structure). A related lensing and inter-fingering of the facies may also be present. The model also records large-scale lateral changes in grain size and sedimentary structure associated with changes in the shape of developing meanders. When channel migration is combined with a constant aggradation rate the model predicts a general slope (relative to the land surface) of facies boundaries and scoured basal surfaces upward in the direction of channel movement. If aggradation sufficiently increases the thickness of fine-grained overbank material, there is a channel stabilization effect. It is shown that a complete sequence of point bar sediments capped by overbank sediments would rarely be preserved in the moving-phase situation. Such preservation only becomes likely when an aggrading section lies out of range of an eroding channel for a considerably longer time span than it takes a meander to move one half-wavelength downvalley. Deep channel scours have a higher preservation potential than contemporary shallower ones. Where appropriate field data exist the model can be used in the more accurate recognition of ancient fluviatile sediments. Inferences may be made about the erosion-deposition processes operating in the ancient channel system, and the geometry and hydraulics of the system can be alluded to. A representative application of the model to the quantitative interpretation of an ancient point bar deposit is illustrated. There is reasonable agreement between the natural and the simulated deposits, and a broad quantitative picture of the palaeoenvironment of sedimentation is obtained.  相似文献   

11.
Measurement of streambed hydraulic conductivity and its anisotropy   总被引:17,自引:0,他引:17  
 A method is described for the measurement of streambed hydraulic conductivity. Unlike permeameter methods, this method applies straight and l-shaped standpipes directly to streambeds for measurements of in-situ hydraulic conductivity in the vertical (K v ) and horizontal (K h ) directions, as well as in other oblique directions (K s ). This method has advantages in determination of K v values over grain-size analysis, permeameter tests, or slug test methods. Also unique to this method is that it provides K s values of a streambed. The measured results can be used to construct a hydraulic conductivity ellipse and to evaluate the anisotropy of streambed sediments. Field examples from the Republican River, Nebraska, demonstrated the usefulness of this method in the determination of streambed hydraulic conductivity and anisotropy along or across a river channel. Results indicate that the K h is about three to four times larger than K v , whereas K s values are larger than K v but smaller than K h . Received: 6 March 2000 · Accepted: 18 April 2000  相似文献   

12.
Information on the anisotropy of streambed hydraulic conductivity (K) is a necessity for analyses of water exchange and solute transport in the hyporheic zone. An approach is proposed for the determination of K, developed from existing in-situ permeameter test methods. The approach is based on determination of vertical and horizontal hydraulic conductivity of streambed sediments on-site and eliminates the effects of vertical flow in the hyporheic zone and stream-stage fluctuation, which normally influence in situ permeameter tests. The approach was applied to seven study sites on four tributaries of the Platte River in east-central Nebraska, USA. On-site permeameter tests conducted on about 172 streambed cores for the determination of vertical hydraulic conductivity (K v) and horizontal hydraulic conductivity (K h) at the study sites indicate that the study sites have relatively small anisotropic ratios, ranging from 0.74 to 2.40. The ratios of K h to K v from individual locations within a study site show greater variation than the anisotropic ratios from the mean or median K at each of the study sites.  相似文献   

13.
陆相深水重力流水道的类型细分及其沉积模式是制约其油气勘探开发的重要因素,但研究程度低。通过对鄂尔多斯盆地南缘瑶曲铁路桥剖面三叠系延长组实测、水道形态参数统计及岩相、粒度等分析,开展了湖相重力流水道的沉积特征、沉积过程及沉积模式研究。结果表明:(1)研究区内可识别出4期复合水道,主要为洪水重力流成因。根据其内部单一水道及单砂体形态特征、岩相组成,将其细分为沉积型和过渡型两类。(2)剖面下部2期复合水道为沉积型,以悬浮载荷成因岩相为主,常见块状净细砂岩、薄层泥岩岩相组合和鲍马序列岩相组合;上部2期复合水道为过渡型,岩相以底床载荷与悬浮载荷共存为特征,自下而上以交错层理细砂岩或叠瓦状泥砾细砂岩与含泥砾/泥岩撕裂屑块状细砂岩、平行层理粗粉砂岩及薄层泥岩的岩相组合为特征。(3)结合单一水道规模及其相互关系,建立了区内过渡、沉积型重力流水道的半定量沉积模式。过渡型水道内部侵蚀与沉积作用共存,单一水道宽度小、宽厚比低,呈透镜状,水道间切割性强,砂体横向稳定性较低,表现出不定向叠加、侧向拼接样式;沉积型水道内部由沉积作用主导,单一水道宽度较大、宽厚比较高,呈似板状—透镜状,砂体横向稳定性较高,表现出稳定的垂向加积样式。  相似文献   

14.
Factors influencing nitrate within a low-gradient agricultural stream   总被引:1,自引:1,他引:0  
In low-gradient agricultural streams, the proportion of land use devoted to agriculture, the sinuosity of the stream and the time of year influence the concentration of nitrate in the stream waters. Land use influences the source of nitrate and also the morphology of the stream. Greater agricultural land use weakly correlated (r = 0.67) to higher nitrate concentrations. Streams in agricultural areas have been straightened, which decreases the sinuosity. As a stream meanders and becomes more sinuous, the potential for lateral hyporheic flow increases, which can enhance a stream system’s ability to remove nitrate. Logically, higher sinuous streams should remove more nitrate and likely sulfate as there is a greater potential for lateral hyporheic flows. To test this hypothesis, nitrate and sulfate were monitored. Mass fluxes of nitrate along six stream segments with varying sinuosity values were calculated and statistically analyzed to assess if differences in mass fluxes along the segments existed. Along the segments, there are statistically significant differences in the mass fluxes of nitrate [F(5,174) = 4.777; p = 0.001]. Stream segments with higher sinuosity index values exhibited a loss or lower gain in nitrate and sulfate than lower sinuosity index segments. The data suggest that stream segments with high sinuosity indices provide greater stream distance and increased hyporheic interaction within the streambed. Additionally, the more sinuous segments provide for an increase in lateral hyporheic flow beneath meander lobes. These additional hyporheic flows lead to enhanced denitrification in low-gradient agricultural streams. Seasonal differences were also noted. August through October experienced the lower nitrate concentrations as compared to June and July which exhibited the highest nitrate concentrations.  相似文献   

15.
《Geodinamica Acta》2013,26(2):145-152
The understanding of deep-water turbidite systems implies a preliminary detailed analysis of the architectural elements which compose them. Using 3D seismic data, three architectural elements are recognized including a new one: the “meandering erosional nested channels”. The spatial organisation and the relative stratigraphic position of these “elementary bricks” allow to define four stages which form the sedimentary history of the distal part of a upper Miocene turbidite system of the Lower Congo basin: 1, depositional stage with frontal splay development; 2, erosional channel and prograding system; 3, depositional stage with vertical aggradation of the channel and 4, abandonment phase with channel avulsion.  相似文献   

16.
The study area is located in the east Tabas Block in Central Iran. Facies analysis of the Qal’eh Dokhtar Formation (middle Callovian to late Oxfordian) was carried out on two stratigraphic sections and applied to depositional environment and sequence stratigraphy interpretation. This formation conformably overlies and underlies the marly-silty Baghamshah and the calcareous Esfandiar formations, respectively. Lateral and vertical facies changes documents low- to high energy environments, including tidal-flat, beach to intertidal, lagoon, barrier, and open-marine. According to these facies associations and absence of resedimentation deposits a depositional model of a mixed carbonate–siliciclastic ramp was proposed for the Qal’eh Dokhtar Formation. Seven third-order depositional sequences were identified in each two measured stratigraphic sections. Transgressive systems tracts (TSTs) show deepening upward trends, i.e. shallow water beach to intertidal and lagoonal facies, while highstand systems tracts (HST) show shallowing upward trends in which deep water facies are overlain by shallow water facies. All sequence boundaries (except at the base of the stratigraphic column) are of the no erosional (SB2) types. We conclude eustatic rather than tectonic factors played a dominant role in controlling carbonate depositional environments in the study area.  相似文献   

17.
《Sedimentology》2018,65(4):1354-1377
The widespread distribution of tidal creeks and channels that undertake meandering behaviour in modern coasts contrasts with their limited documentation in the fossil record, where point‐bar elements arising from the interaction between a mix of both fluvial and tidal currents are mainly documented. The sedimentary products of tidal channel‐bend evolution are relatively poorly known, and few studies have focused previously on specific facies models for tidal point bars present in modern settings. This study improves understanding of tidal channel meander bends through a multi‐disciplinary approach that combines analyses of historical aerial photographs, measurements of in‐channel flow velocity, high‐resolution facies analyses of sedimentary cores and three‐dimensional architectural modelling. The studied channel bend (12 to 15 m wide and 2 to 3 m deep) drains a salt marsh area located in the north‐eastern sector of the microtidal Venice Lagoon, Italy. Historical photographs show that, during the past 77 years, the bend has translated seaward ca 15 m. Results show that the channel bend formed on a non‐vegetated mud flat that was progressively colonized by vegetation. Seaward translation occurred under aggradational conditions, with an overall migration rate of 0·2 to 0·3 m year−1, and was promoted by the occurrence of cohesive, poorly erodible outer bank deposits. Ebb currents are dominant, and translation of the channel bend promotes erosion and deposition along the landward and seaward side of the bar, respectively. Tidal currents show a clear asymmetry in terms of velocity distribution, and their offset pattern provides a peculiar grain‐size distribution within the bar. During the flood stage, sand sedimentation occurs in the upper part of the bar, where the maximum flow velocity occurs. During the ebb stage, the bar experiences the secondary helical flow that accumulates sand at the toe of the bar. Lateral stacking of flood and ebb deposits has caused the formation of localized coarsening‐upward and fining‐upward sedimentary packages, respectively.  相似文献   

18.
本研究首次应用分布式光纤测温技术,监测张掖市临泽县平川段的黑河河床表面温度与河水温度,确定了该时段黑河中游湿地临泽平川段的地表水地下水转换情况。分布式光纤测温系统温度分辨率为0.01℃,采样间距为0.25m,时间间隔为4min。通过对全长550m的河床表面温度与河水温度连续监测,分析该区段温度场动态,发现试验区河段河流受地下水补给,有地下水溢出带。通过河床表面温度与河水温度、环境温度的对比,清楚反映了该河段温度异常带的分布与变化规律,明确了地下水溢出带的位置与地下水溢出强度。  相似文献   

19.
侯明才 《铀矿地质》2000,16(4):199-203,232
本文通过对河道和河谷两个不同地貌单元特征的界定 ,澄清铀矿地质领域中对古河道型砂岩铀矿床与古河谷型砂岩铀矿床概念上的混淆。同时就河道与河谷对基准面变化的响应及充填序列特征作了探讨 ,为确定古河道在平面上的展布提供依据。  相似文献   

20.
A new method for mapping variability in vertical seepage flux in streambeds   总被引:3,自引:1,他引:2  
A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号