首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether groundwater resources can be sustainably utilized is largely determined and characterized by hydrogeological parameters.Estimating the groundwater recharge is one of the essential parameters for managing water resources and protecting water resources from contamination.This study researched the spatial and temporal variation of groundwater recharge in the Thepkasattri sub-district through integrating chloride mass balance(CMB)and water table fluctuation(WTF)methods.The chloride content of representative rainfall and groundwater samples was analyzed.Besides,WTF method was adopted from groundwater level data from 2012 to 2015.According to the CMB method,the mean recharge was estimated to be 1172 mm per year,accounting for 47%of the annual rainfall.Moreover,the estimated recharge from the WTF method took 26%of annual rainfall in 2015.The recharge was underestimated according to the WTF method,because of the uncertainty in specific yield estimates and the number of representative wells in the study area.Moreover,the correlation between rainfall and water table fluctuation data indicated the positive linear relationship between two parameters.The spatial recharge prediction indicated that recharge was higher(1200-1400 mm/yr)in the eastern and western catchment,while that in the central floodplains was between 800 mm/yr and 1100 mm/yr.In addition,low recharge value between 450 mm/yr and 800 mm/yr was observed in the south-west part of Thepkasattri.The spatial variation of recharge partly reflects the influences of land use and land cover of the study area.  相似文献   

2.
The chloride mass balance (CMB) and water-table fluctuation (WTF) analysis methods were used to estimate recharge rates in the Uley South Basin, South Australia. Groundwater hydrochemistry and isotope data were used to infer the nature of recharge pathways and evapotranspiration processes. These data indicate that some combination of two plausible processes is occurring: (1) complete evaporation of rainfall occurs, and the precipitated salts are washed down and redissolved when recharge occurs, and (2) transpiration dominates over evaporation. It is surmised that sinkholes predominantly serve to by-pass the shallow soil zone and redistribute infiltration into the deeper unsaturated zone, rather than transferring rainfall directly to the water table. Chlorofluorocarbon measurements were used in approximating recharge origins to account for coastal proximity effects in the CMB method and pumping seasonality was accounted for in the WTF-based recharge estimates. Best estimates of spatially and temporally averaged recharge rates for the basin are 52?C63 and 47?C129?mm/year from the CMB and WTF analyses, respectively. Adaptations of both the CMB and WTF analyses to account for nuances of the system were necessary, demonstrating the need for careful application of these methods.  相似文献   

3.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

4.
In this study, the first groundwater recharge map for United Arab Emirates (UAE) was developed using the recharge potential and water table fluctuation methods. Recharge potential estimates were made using information about infiltration rate, soil type, ground slope, geological and hydrogeological factors, and the availability of rainfall harvesting infrastructure and were validated by measurements of water table rise in alluvial aquifers in wadis. Based on this information, the total recharge in the UAE is estimated to be about 133 million cubic meters per year (MCM/year). Annual recharge rates are calculated to vary between 1 and 28% of precipitation in the different regions of UAE depending on several natural and manmade parameters including, among others, recharge enhancing infrastructure. Estimates from the two methods are 98% in agreement; which suggests that the recharge potential method is suitable for estimating aquifer’s recharge in UAE and arid regions. The water table fluctuation method was found to be more suitable for assessing recharge through gravel plains and wadis in mountainous areas.  相似文献   

5.
Most human activities and hydrogeological information on small young volcanic islands are near the coastal area. There are almost no hydrological data from inland areas, where permanent springs and/or boreholes may be rare or nonexistent. A major concern is the excessive salinity of near-the-coast wells. Obtaining a conceptual hydrogeological model is crucial for groundwater resources development and management. Surveys of water seepages and rain for chemical and environmental isotope contents may provide information on the whole island groundwater flow conditions, in spite of remaining geological and hydrogeological uncertainties. New data from Easter Island (Isla de Pascua), in the Pacific Ocean, are considered. Whether Easter Island has a central low permeability volcanic “core” sustaining an elevated water table remains unknown. Average recharge is estimated at 300–400 mm/year, with a low salinity of 15–50 mg/L Cl. There is an apron of highly permeable volcanics that extends to the coast. The salinity of near-the-coast wells, >1,000 mg/L Cl, is marine in origin. This is the result of a thick mixing zone of island groundwater and encroached seawater, locally enhanced by upconings below pumping wells. This conceptual model explains what is observed, in the absence of inland boreholes and springs.  相似文献   

6.
The scarcity of surface water resources in arid and semi-arid regions from North African countries contributes to the considerable increase of groundwater exploitation, which leads to the development of hydrogeological studies. However, due to the lack of hydrodynamic data in these regions, these studies focus more and more on the geochemical and environmental isotope techniques to insure a better understanding of the hydrodynamic functioning of subsurface systems. In this study, which interests an important unconfined aquifer in central Tunisia, tritium data and chloride mass balance (CMB) method were applied in order to (1) understand the mode of recharge of this aquifer and (2) obtain a reliable estimation of its recharge amount as well as (3) estimate its annual renewal rate. It has been demonstrated that the shallow groundwaters are classified into two groups according to their tritium contents. The first group includes wells located mainly downstream and highlights the significant role of the post-nuclear lineal recharge through Wadis courses. The second group encloses wells located practically overall the rest of the basin and refers to relatively modern waters originated from areal recharge of present-day rainfall. Based on the CMB method, the recharge to this unconfined aquifer is estimated to 31.7 mm year−1, which corresponds to 10.5% of the total rainfall. The annual renewal rate of groundwater, evaluated based on the tritium contents, is up to 16%.  相似文献   

7.
Improvement in modern water resource management has become increasingly reliant on better characterizing of the spatial variability of groundwater recharge mechanisms. Due to the flexibility and reliability of GIS-based index models, they have become an alternative for mapping and interpreting recharge systems. For this reason, an index model by integrating water balance parameters (surface runoff, actual evapotranspiration, and percolation) calculated by Thornthwaite and Mather’s method, with maps of soil texture, land cover, and terrain slope, was developed for a sustainable use of the groundwater resources. The Serra de Santa Helena Environmental Protection Area, next to the urbanized area of Sete Lagoas (MG), Brazil, was selected as the study area. Rapid economic growth has led to the subsequent expansion of the nearby urban area. Large variability in soil type, land use, and slope in this region resulted in spatially complex relationships between recharge areas. Due to these conditions, the study area was divided into four zones, according to the amount of recharge: high (>?100 mm/year), moderate (50–100 mm/year), low (25–50 mm/year), and incipient (>?25 mm/year). The technique proved to be a viable method to estimate the spatial variability of recharge, especially in areas with little to no in situ data. The success of the tool indicates it can be used for a variety of groundwater resource management applications.  相似文献   

8.
The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater recharge estimation methods and results were compared: chloride mass balance method (19–62 mm/year); water-table fluctuation method (2–50 mm/year); Darcian flownet computations (16–28 mm/year); 14C age dating (22–25 mm/year); and groundwater modeling (11–26 mm/year). The flownet computational and modeling methods provided better estimates for aerial recharge than the other methods. Based on groundwater modeling, a final estimate for recharge (from precipitation) on the order of 15–20 mm/year is believed to be realistic, assuming that part of the recharge water transpires from the water table by deep-rooted vegetation. This recharge estimate (2.7–3.6% of the annual precipitation of 555 mm/year) compares well with the results of other researchers. The advantages/disadvantages of each recharge method in terms of ease of application, accuracy, and costs are discussed. The groundwater model was also used to quantify the total recharge of the Nyamandhlovu aquifer system (20?×?106–25?×?106 m3/year). Groundwater abstractions exceeding 17?×?106 m3/year could cause ecological damage, affecting, for instance, the deep-rooted vegetation in the area.  相似文献   

9.
The groundwater table in the piedmont plain was only about 1–2 m in depth in the 1950s and 1960s, but it lowered dramatically afterwards to about 25–27 m in depth (currently 21–23 m above sea level) due to overpumping of groundwater and drought in the region. This change has adversely affected the sustainable development and food supply of this important agricultural area. The groundwater table at Luancheng Experimental Station of the Chinese Academy of Sciences, located in the piedmont, dropped from 39.36 m in 1975 to 21.47 m above sea level in 1999, at an average rate of 0.72 m/year. Water balance components, such as daily rainfall, pan-evaporation, and evapotranspiration (by lysimeter after 1995) have been recorded since the 1970s, and they were used as variants to simulate monthly water table change based on a physically based statistical model. Groundwater samples were collected during the period 1998–2001, and tritium was measured in the laboratory to trace the groundwater flow from the Taihang Mountains to the piedmont. A reasonable exploitation rate of 150 mm/year was obtained from the model by assuming the annual water table is constant. The recharge and groundwater flow from the Taihang Mountains plays an important role in the water balance of the piedmont area, and it was estimated to be about 112.5 mm/year by using the variation of tritium with the depth, which followed a good exponential function. The simple water balance calculation indicated that the water table could recede at a rate of 0.8 m/year, which is close to the actual situation.  相似文献   

10.

Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards’ equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9– 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.

  相似文献   

11.
Recharge is a key parameter in groundwater resources management, and a reliable estimate of recharge is required for their sustainable development. Several methods are available to evaluate recharge; however, selecting the appropriate one is made difficult because each method has its advantages and drawbacks, and results can vary greatly from one method to another. Recharge methods can actually refer to different processes. This paper compares and discusses the results obtained from five regional-scale recharge assessment approaches applied to a fractured rock aquifer in a region with a temperate and humid climate (Annapolis Valley, Nova Scotia, Canada). These methods are distinguished between those providing estimates of the net infiltration (I) into the subsurface (river hydrograph separation and soil moisture balance) from those considering the net recharge (W) to the regional bedrock aquifer (river 7-day low-flows, the corrected soil moisture balance, a numerical groundwater flow model developed with FEFLOW and an infiltration model developed with HELP). The estimated net infiltration ranges from 160 to 250 mm/year, whereas the net recharge estimates range from 80 to 175 mm/year for the entire study area. Although different assessment methods were used, the estimated recharge range is still quite large, demonstrating the importance of using several methods. This case study should provide guidance on choices to be made in the development of a strategy for assessing representative values of aquifer recharge at the regional scale under similar geological and climatic conditions. The use of multiple complementary approaches should lead to a better understanding of the system dynamics and to better defined a representative range of recharge estimates.  相似文献   

12.
Understanding sources and rates of recharge to the Badain Jaran Desert in northern China is important for assessing sustainability of the area’s oasis lake ecosystem and its water resources in general. For this purpose, direct recharge was investigated with the chloride mass balance method for 18 unsaturated zone profiles (6–16 m depth). Spatial variability is low across the area (range in mean Cl in profiles: 62–164 mg/L Cl), largely attributable to the uniformity of sandy unsaturated zone conditions. No strong correlations between environmental factors of profile locations and recharge rates were found, though a weak relationship between recharge and vegetation density was suggested. The study area’s complex dune morphology appears to have no measurable impact on recharge variability. Mean estimated diffuse recharge is 1.4 mm/year (1.0–3.6 mm/year for 95% confidence level), approximately 1.7% of mean annual precipitation. Temporal fluctuations in recharge due to climate variability are apparent and there is good correspondence in temporal trends over a time span of 200–300 years. Water balance considerations indicate that direct recharge is insufficient to support the numerous perennial lakes in the study area, suggesting that diffuse recharge presently plays a minor role in the overall water balance of the desert’s shallow Quaternary aquifer.  相似文献   

13.
Groundwater is the major source of water and a critical resource for socioeconomic development in semi-arid environments like the Johannesburg area. Environmental isotopes are employed in this study to characterise groundwater recharge and flow mechanisms in the bedrock aquifers of Johannesburg, which is known for polluted surface water. With the exception of boreholes near the Hartbeespoort Dam, groundwater in the study area was derived from meteoric water that has undergone some degree of evaporation before recharge, possibly via diffuse mechanisms. Boreholes that tap groundwater from the Transvaal Supergroup Formation show depletion in δ18O and δ2H values. This is attributed to diffuse recharge through weathering fractures at high elevation that are undergoing deep circulation or recharge from depleted rainfall from the high-latitude moisture sources. The influence of focused recharge from the Hartbeespoort Dam was observed in the boreholes north of the dam, possibly as a result of the north–south trending fault lines and the north-dipping fractures in the bedding planes of quartzites. This is also supported by a reservoir water budget method which indicated a mean annual net flux of 2,084,131 m3 from Hartbeespoort Dam recharging groundwater per annum. Using tritium in the dam and boreholes located at 750 m and 5400 m downstream, average groundwater flow velocity was estimated as 202 m/year. An open system was observed in shale, andesite and granitic-gneiss aquifers indicating soil CO2 as a dominant source of carbon (δ13C) in groundwater. A closed system was also observed in dolomitic aquifers indicating carbonate dissolution as the predominant source of carbon.  相似文献   

14.
Water and nutrient availability for crop production are critical issues in (semi)arid regions. Unsaturated-zone Cl tracer data and nutrient (NO3 and PO4) concentrations were used to quantify recharge rates using the Cl mass balance approach and nutrient availability in the Thar Desert, Rajasthan, India. Soil cores were collected in dune/interdune settings in the arid Thar Desert (near Jaisalmer) and in rain-fed (nonirrigated) and irrigated cropland in the semiarid desert margin (near Jaipur). Recharge rates were also simulated using unsaturated zone modeling. Recharge rates in sparsely vegetated dune/interdune settings in the Jaisalmer study area are 2.7–5.6 mm/year (2–3% of precipitation, 165 mm/year). In contrast, recharge rates in rain-fed agriculture in the Jaipur study area are 61–94 mm/year (10–16% of precipitation, 600 mm/year). Minimum recharge rates under current freshwater irrigated sites are 50–120 mm/year (8–20% of precipitation). Nitrate concentrations are low at most sites. Similarity in recharge rates based on SO4 with those based on Cl is attributed to a meteoric origin of SO4 and generally conservative chemical behavior in these sandy soils. Modeling results increased confidence in tracer-based recharge estimates. Recharge rates under rain-fed agriculture indicate that irrigation of 20–40% of cultivated land with 300 mm/year should be sustainable.  相似文献   

15.
Spatially distributed recharge is compared at two different scales using three different modeling approaches within the semi-arid Okanagan Basin, British Columbia, Canada. Regional recharge was modeled by mapping results for one-dimensional soil columns from the water-balance code HELP (Hydrologic Evaluation of Landfill Performance, V3.80D). The regional model was then compared to two, independently derived, local-scale models to ensure local trends were captured in the regional model, and to compare modeling methods. Average annual recharge, predicted by the regional model, varied from no recharge to 186 mm/yr. For the north Okanagan (Vernon area), regional estimates were compared to Richards’ equation-based MIKE-SHE (V2007) estimates, which showed a significant difference in average annual recharge: 7 mm/yr (MIKE-SHE) and 109 mm/yr (HELP). In the south Okanagan (Oliver area), regional estimates were compared to high-resolution, local HELP estimates. Similar values of average annual recharge were obtained: 34 mm/yr (local) and 42 mm/yr (regional). A comparison with measured actual evapotranspiration data in the north Okanagan, showed HELP over-predicted recharge compared to MIKE-SHE by under-predicting evapotranspiration during summer months. Thus, the use of HELP in semi-arid areas may be limited if accurate estimates of recharge are needed. However, results may give satisfactory groundwater model calibrations results because of high uncertainty in hydraulic properties.  相似文献   

16.
Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960–1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070–2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258–616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.  相似文献   

17.
A case study is presented to assess the relevance of geomorphology in hydrogeological phenomena in an arid coastal area in the Argentinean extra-Andean Patagonia (Península Valdés) with an average rainfall of 232 mm/year and a soil moisture deficit of about 472 mm/year. Various geomorphic units were identified by interpreting Landsat 7 satellite images processed with ER Mapper software and then surveyed in the field, as well as by geological characterization. The hydrodynamic analysis was based on a survey of 89 wells, the construction of equipotential maps, and the interpretation of pumping-test results by a non-equilibrium method. The hydrochemical characterization was based on chemical tests analyzed with the Easy_Quim 6.0 application. The combination of geomorphological, geological, hydrodynamic and hydrochemical elements allowed the definition of hydromorphological units that are typical of recharge, circulation and discharge areas, the latter both for coastal and inland areas in wetlands (salt pans) with elevations to ?40 m relative to sea level. These units and the criteria used for their definition allow immediate recognition of hydrogeological phenomena in arid regions such as the extra-Andean Patagonia, with low information density but with near-optimal satellite imaging of landforms due to the lack of vegetation cover.  相似文献   

18.

Particularly in arid and semiarid areas, more and more populations rely almost entirely on imported water. However, the extent to which intentional discharge into transiting river systems and unintentional leakage may be augmenting water resources for communities along and down gradient of the water transfer scheme has not previously been subject to research. The objective of this study was to assess both the potential of a large-scale water transfer (WT) scheme to increase groundwater availability by channel transmission losses in a large dryland aquifer system (2,166 km²) in Brazil, and the capability of the receiving streams to transport water downstream under a prolonged drought. An integrated surface-water/groundwater model was developed to improve the estimation of the groundwater resources, considering the spatio-temporal variability of infiltrated rainfall for aquifer recharge. Aquifer recharge from the WT scheme was simulated under prolonged drought conditions, applying an uncertainty analysis of the most influential fluxes and parameters. The annual recharge (66 mm/year) was approximately twice the amount of water abstracted (1990–2016); however, the annual recharge dropped to 13.9 mm/year from 2012 to 2016, a drought period. Under similar drought conditions, the additional recharge (6.89 × 106 m³/year) from the WT scheme did not compensate for the decrease in groundwater head in areas that do not surround the receiving streams. Actually, the additional recharge is counteracted by a decrease of 25% of natural groundwater recharge or an increase of 50% in pumping rate; therefore, WT transmission losses alone would not solve the issue of the unsustainable management of groundwater resources.

  相似文献   

19.
Despite a long history of related research, quantifying and verifying recharge is still a major challenge. The combination and comparison of conceptually different methods has been recommended as a strategy for evaluating recharge estimates. In this article, recharge estimates from water-table fluctuation (WTF) methods are combined with and compared to the results of the spatially and temporally discretized soil-water-balance model PROMET (processes of radiation, mass and energy transfer). As PROMET and WTF methods rely on different measurable variables, a comparison of these two contrasting techniques allows improved assessment of the plausibility of recharge estimates. An enhanced approach to WTF methods is presented. The approach assumes that in the case of no recharge, there exists a maximum possible potential decline for any given groundwater level. The primary conclusion is that WTF methods are excellent for determining the plausibility of spatially distributed regional-groundwater-recharge estimation approaches and for detecting inconsistencies in available models. Recharge estimates derived from WTF approaches alone are, however, not suitable for regional-scale recharge estimation due to (1) their strong dependency on local data, applicability of which is limited to only very specific conditions, and (2) their sensitivity to influences other than recharge.  相似文献   

20.
Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55–70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号