首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative landslide susceptibility mapping at Pemalang area,Indonesia   总被引:3,自引:0,他引:3  
For quantitative landslide susceptibility mapping, this study applied and verified a frequency ratio, logistic regression, and artificial neural network models to Pemalang area, Indonesia, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of aerial photographs, satellite imagery, and field surveys; a spatial database was constructed from topographic and geological maps. The factors that influence landslide occurrence, such as slope gradient, slope aspect, curvature of topography, and distance from stream, were calculated from the topographic database. Lithology was extracted and calculated from geologic database. Using these factors, landslide susceptibility indexes were calculated by frequency ratio, logistic regression, and artificial neural network models. Then the landslide susceptibility maps were verified and compared with known landslide locations. The logistic regression model (accuracy 87.36%) had higher prediction accuracy than the frequency ratio (85.60%) and artificial neural network (81.70%) models. The models can be used to reduce hazards associated with landslides and to land-use planning.  相似文献   

2.
Ensemble-based landslide susceptibility maps in Jinbu area, Korea   总被引:2,自引:2,他引:0  
Ensemble techniques were developed, applied and validated for the analysis of landslide susceptibility in Jinbu area, Korea using the geographic information system (GIS). Landslide-occurrence areas were detected in the study by interpreting aerial photographs and field survey data. Landslide locations were randomly selected in a 70/30 ratio for training and validation of the models, respectively. Topography, geology, soil and forest databases were also constructed. Maps relevant to landslide occurrence were assembled in a spatial database. Using the constructed spatial database, 17 landslide-related factors were extracted. The relationships between the detected landslide locations and the factors were identified and quantified by frequency ratio, weight of evidence, logistic regression and artificial neural network models and their ensemble models. The relationships were used as factor ratings in the overlay analysis to create landslide susceptibility indexes and maps. Then, the four landslide susceptibility maps were used as new input factors and integrated using the frequency ratio, weight of evidence, logistic regression and artificial neural network models as ensemble methods to make better susceptibility maps. All of the susceptibility maps were validated by comparison with known landslide locations that were not used directly in the analysis. As the result, the ensemble-based landslide susceptibility map that used the new landslide-related input factor maps showed better accuracy (87.11% in frequency ratio, 83.14% in weight of evidence, 87.79% in logistic regression and 84.54% in artificial neural network) than the individual landslide susceptibility maps (84.94% in frequency ratio, 82.82% in weight of evidence, 87.72% in logistic regression and 81.44% in artificial neural network). All accuracy assessments showed overall satisfactory agreement of more than 80%. The ensemble model was found to be more effective in terms of prediction accuracy than the individual model.  相似文献   

3.
This paper summarizes findings of landslide hazard analysis on Penang Island, Malaysia, using frequency ratio, logistic regression, and artificial neural network models with the aid of GIS tools and remote sensing data. Landslide locations were identified and an inventory map was constructed by trained geomorphologists using photo-interpretation from archived aerial photographs supported by field surveys. A SPOT 5 satellite pan sharpened image acquired in January 2005 was used for land-cover classification supported by a topographic map. The above digitally processed images were subsequently combined in a GIS with ancillary data, for example topographical (slope, aspect, curvature, drainage), geological (litho types and lineaments), soil types, and normalized difference vegetation index (NDVI) data, and used to construct a spatial database using GIS and image processing. Three landslide hazard maps were constructed on the basis of landslide inventories and thematic layers, using frequency ratio, logistic regression, and artificial neural network models. Further, each thematic layer’s weight was determined by the back-propagation training method and landslide hazard indices were calculated using the trained back-propagation weights. The results of the analysis were verified and compared using the landslide location data and the accuracy observed was 86.41, 89.59, and 83.55% for frequency ratio, logistic regression, and artificial neural network models, respectively. On the basis of the higher percentages of landslide bodies predicted in very highly hazardous and highly hazardous zones, the results obtained by use of the logistic regression model were slightly more accurate than those from the other models used for landslide hazard analysis. The results from the neural network model suggest the effect of topographic slope is the highest and most important factor with weightage value (1.0), which is more than twice that of the other factors, followed by the NDVI (0.52), and then precipitation (0.42). Further, the results revealed that distance from lineament has the lowest weightage, with a value of 0. This shows that in the study area, fault lines and structural features do not contribute much to landslide triggering.  相似文献   

4.
The objective of this study is to map landslide susceptibility in Zigui segment of the Yangtze Three Gorges area that is known as one of the most landslide-prone areas in China by using data from light detection and ranging (LiDAR) and digital mapping camera (DMC). The likelihood ratio (LR) and logistic regression model (LRM) were used in this study. The work is divided into three phases. The first phase consists of data processing and analysis. In this phase, LiDAR and DMC data and geological maps were processed, and the landslide-controlling factors were derived such as landslide density, digital elevation model (DEM), slope angle, aspect, lithology, land use and distance from drainage. Among these, the landslide inventories, land use and drainage were constructed with both LiDAR and DMC data; DEM, slope angle and aspect were constructed with LiDAR data; lithology was taken from the 1:250,000 scale geological maps. The second phase is the logistic regression analysis. In this phase, the LR was applied to find the correlation between the landslide locations and the landslide-controlling factors, whereas the LRM was used to predict the occurrence of landslides based on six factors. To calculate the coefficients of LRM, 13,290,553 pixels was used, 29.5 % of the total pixels. The logical regression coefficients of landslide-controlling factors were obtained by logical regression analysis with SPSS 17.0 software. The accuracy of the LRM was 88.8 % on the whole. The third phase is landslide susceptibility mapping and verification. The mapping result was verified using the landslide location data, and 64.4 % landslide pixels distributed in “extremely high” zone and “high” zone; in addition, verification was performed using a success rate curve. The verification result show clearly that landslide susceptibility zones were in close agreement with actual landslide areas in the field. It is also shown that the factors that were applied in this study are appropriate; lithology, elevation and distance from drainage are primary factors for the landslide susceptibility mapping in the area, while slope angle, aspect and land use are secondary.  相似文献   

5.
Landslide-related factors were extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, and integrated techniques were developed, applied, and verified for the analysis of landslide susceptibility in Boun, Korea, using a geographic information system (GIS). Digital elevation model (DEM), lineament, normalized difference vegetation index (NDVI), and land-cover factors were extracted from the ASTER images for analysis. Slope, aspect, and curvature were calculated from a DEM topographic database. Using the constructed spatial database, the relationships between the detected landslide locations and six related factors were identified and quantified using frequency ratio (FR), logistic regression (LR), and artificial neural network (ANN) models. These relationships were used as factor ratings in an overlay analysis to create landslide susceptibility indices and maps. Three landslide susceptibility maps were then combined and applied as new input factors in the FR, LR, and ANN models to make improved susceptibility maps. All of the susceptibility maps were verified by comparison with known landslide locations not used for training the models. The combined landslide susceptibility maps created using three landslide-related input factors showed improved accuracy (87.00% in FR, 88.21% in LR, and 86.51% in ANN models) compared to the individual landslide susceptibility maps (84.34% in FR, 85.40% in LR, and 74.29% in ANN models) generated using the six factors from the ASTER images.  相似文献   

6.
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.  相似文献   

7.
This study applied, tested and compared a probability model, a frequency ratio and statistical model, a logistic regression to Damre Romel area, Cambodia, using a geographic information system. For landslide susceptibility mapping, landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and a spatial database was constructed from topographic maps, geology and land cover. The factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from lineament were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite imagery. The relationship between the factors and the landslides was calculated using frequency ratio and logistic regression models. The relationships, frequency ratio and logistic regression coefficient were overlaid to make landslide susceptibility map. Then the landslide susceptibility map was compared with known landslide locations and tested. As the result, the frequency ratio model (86.97%) and the logistic regression (86.37%) had high and similar prediction accuracy. The landslide susceptibility map can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

8.
There are different approaches and techniques for landslide susceptibility mapping. However, no agreement has been reached in both the procedure and the use of specific controlling factors employed in the landslide susceptibility mapping. Each model has its own assumption, and the result may differ from place to place. Different landslide controlling factors and the completeness of landslide inventory may also affect the different result. Incomplete landslide inventory may produce significance error in the interpretation of the relationship between landslide and controlling factor. Comparing landslide susceptibility models using complete inventory is essential in order to identify the most realistic landslide susceptibility approach applied typically in the tropical region Indonesia. Purwosari area, Java, which has total 182 landslides occurred from 1979 to 2011, was selected as study area to evaluate three data-driven landslide susceptibility models, i.e., weight of evidence, logistic regression, and artificial neural network. Landslide in the study area is usually affected by rainfall and anthropogenic activities. The landslide typology consists of shallow translational and rotational slide. The elevation, slope, aspect, plan curvature, profile curvature, stream power index, topographic wetness index, distance to river, land use, and distance to road were selected as landslide controlling factors for the analysis. Considering the accuracy and the precision evaluations, the weight of evidence represents considerably the most realistic prediction capacities (79%) when comparing with the logistic regression (72%) and artificial neural network (71%). The linear model shows more powerful result than the nonlinear models because it fits to the area where complete landslide inventory is available, the landscape is not varied, and the occurence of landslide is evenly distributed to the class of controlling factor.  相似文献   

9.
The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the resulting techniques to the study area of Boun in Korea. Landslide locations were identified in the study area from interpretation of aerial photographs and field survey data. A spatial database of the topography, soil type, timber cover, geology, and land cover was constructed and the landslide-related factors were extracted from the spatial database. Using these factors, the susceptibility to landslides was analyzed by artificial neural network methods. The results of the landslide susceptibility maps were compared and verified using known landslide locations at another area, Yongin, in Korea. A Geographic Information System (GIS) was used to analyze efficiently the vast amount of data and an artificial neural network turned out to be an effective tool to analyze the landslide susceptibility.  相似文献   

10.
Landslide susceptibility zonation mapping assists researchers greatly to understand the spatial distribution of slope failure probability in a region. Being extremely useful in reducing landslide hazards, such maps could simply be produced using both qualitative and quantitative methods. In the present study, a multivariate statistical method called ‘logistic regression’ was used to assess landslide susceptibility in Hashtchin region, situated in west of Alborz Mountainsnorthwest of Iran. In this study, two independent variables, categorical (predictor) and continuous, were drawn on together in the model. To identify the region’s landslides use was made of aerial photographs, field studies and topographic maps. To prepare the database of factors affecting the region’s landslides and to determine landslide zones, geographic information system (GIS) was used. Using such information, landslide susceptibility modeling was accomplished. The data related to factors causing landslides were extracted as independent variables in each cell (in 50 m×50 m cells). Then, the whole data were input into the SPSS, Version 18. The prepared database was later analyzed using logistic regression, the forward stepwise method and based on maximum likelihood estimation. Regression equation was determined using obtained constants and coefficients and the landslide susceptibility of the area in grid-cells (pixels) was computed between 0 and 0.9954. The Receiver Operating Characteristic (ROC) curve was used to assess the accuracy of the logistic regression model. The predicting ability of the model was 84.1% given the area under ROC curve. Finally, the degree of success of landslide susceptibility zonation mapping was estimated to be 79%.  相似文献   

11.
This study considers landslide susceptibility mapping by means of frequency ratio and artificial neural network approaches using geographic information system (GIS) techniques as a basic analysis tool. The selected study area was that of the Panchthar district, Nepal. GIS was used for the management and manipulation of spatial data. Landslide locations were identified from field survey and aerial photographic interpretation was used for location of lineaments. Ten factors in total are related to the occurrence of landslides. Based on the same set of factors, landslide susceptibility maps were produced from frequency ratio and neural network models, and were then compared and evaluated. The weights of each factor were determined using the back-propagation training method. Landslide susceptibility maps were produced from frequency ratio and neural network models, and they were then compared by means of their checking. The landslide location data were used for checking the results with the landslide susceptibility maps. The accuracy of the landslide susceptibility maps produced by the frequency ratio and neural networks is 82.21 and 78.25%, respectively.  相似文献   

12.
浙西梅雨滑坡易发性评价模型对比   总被引:1,自引:0,他引:1       下载免费PDF全文
我国目前滑坡易发性评价研究主要集中在西南地区,对东南部降雨引发特别是梅雨引发的滑坡研究较少.选取浙江省西北部梅雨控制区淳安县为研究区,通过遥感解译结合野外详细调查,共确定滑坡596处,并建立滑坡编录数据库.选取高程、坡向、坡度、曲率、工程岩组、断层、道路、建设用地、植被等9个滑坡影响因子,基于GIS栅格分析方法,采用人工神经网络(ANN)、logistic回归和信息量3种评价模型,分别对32种不同影响因子组合进行滑坡易发性对比评价,得到滑坡易发性指数图.应用评价曲线下面积AUC(area under curve)对评价结果进行检验,ANN、logistic回归和信息量3种模型的正确率分别是93.75%、89.76%和90.06%;采用淳安县2014年梅汛期发生的13处滑坡作为预测样本,3种模型预测率分别是94.75%、94.33%和77.21%.上述分析结果表明:ANN模型优于其他两者.以ANN模型评价结果指数图为基础进行易发性分区,采用滑坡强度指标进行分区结果检验,滑坡强度值由易发性低、较低、中和高依次递增,说明分区结果合理.研究成果可以为浙西降雨型滑坡特别是由梅雨引发滑坡的易发性评价提供参考.   相似文献   

13.
The main purpose of this study is to highlight the conceptual differences of produced susceptibility models by applying different sampling strategies: from all landslide area with depletion and accumulation zones and from a zone which almost represents pre-failure conditions. Variations on accuracy and precision values of the models constructed considering different algorithms were also investigated. For this purpose, two most popular techniques, logistic regression analysis and back-propagation artificial neural networks were taken into account. The town Ispir and its close vicinity (Northeastern part of Turkey), suffered from landsliding for many years was selected as the application site of this study. As a result, it is revealed that the back-propagation artificial neural network algorithms overreact to the samplings in which the presence (1) data were taken from the landslide masses. When the generalization capacities of the models are taken into consideration, these reactions cause imprecise results, even though the area under curve (AUC) values are very high (0.915 < AUC < 0.949). On the other hand, the susceptibility maps, based on the samplings in which the presence (1) data were taken from a zone which almost represents pre-failure conditions constitute more realistic susceptibility evaluations. However, considering the spatial texture of the final susceptibility values, the maps produced using the outputs of the back-propagation artificial neural networks could be interpreted as highly optimistic, while of those generated using the resultant probabilities of the logistic regression equations might be evaluated as pessimistic. Consequently, it is evident that, there are still some needs for further investigations with more realistic validations and data to find out the appropriate accuracy and precision levels in such kind of landslide susceptibility studies.  相似文献   

14.
This article presents a multidisciplinary approach to landslide susceptibility mapping by means of logistic regression, artificial neural network, and geographic information system (GIS) techniques. The methodology applied in ranking slope instability developed through statistical models (conditional analysis and logistic regression), and neural network application, in order to better understand the relationship between the geological/geomorphological landforms and processes and landslide occurrence, and to increase the performance of landslide susceptibility models. The proposed experimental study concerns with a wide research project, promoted by the Tuscany Region Administration and APAT-Italian Geological Survey, aimed at defining the landslide hazard in the area of the Sheet 250 “Castelnuovo di Garfagnana” (1:50,000 scale). The study area is located in the middle part of the Serchio River basin and is characterized by high landslide susceptibility due to its geological, geomorphological, and climatic features, among the most severe in Italy. Terrain susceptibility to slope failure has been approached by means of indirect-quantitative statistical methods and neural network software application. Experimental results from different methods and the potentials and pitfalls of this methodological approach have been presented and discussed. Applying multivariate statistical analyses made it possible a better understanding of the phenomena and quantification of the relationship between the instability factors and landslide occurrence. In particular, the application of a multilayer neural network, equipped for supervised learning and error control, has improved the performance of the model. Finally, a first attempt to evaluate the classification efficiency of the multivariate models has been performed by means of the receiver operating characteristic (ROC) curves analysis approach.  相似文献   

15.
The aim of this study is to apply and compare a probability model, frequency ratio and statistical model, and a logistic regression to Sajaroud area, Northern Iran using geographic information system. Landslide locations of the study area were detected from interpretation of aerial photographs and field surveys. Landslide-related factors such as elevation, slope gradient, slope aspect, slope curvature, rainfall, distance to fault, distance to drainage, distance to road, land use, and geology were calculated from the topographic and geology map and LANDSAT ETM satellite imagery. The spatial relationships between the landslide location and each landslide-related factor were analyzed and then landslide susceptibility maps were produced using the frequency ratio and forward stepwise logistic regression methods. Finally, the maps were tested and compared using known landslide locations, and success rates were calculated. Predicted accuracy values for frequency ratio (79.48%) and logistic regression models showed that the map obtained from frequency ratio model is more accurate than the logistic regression (77.4%) model. The models used in this study have shown a great deal of importance for watershed management and land use planning.  相似文献   

16.
Aykut Akgun 《Landslides》2012,9(1):93-106
The main purpose of this study is to compare the use of logistic regression, multi-criteria decision analysis, and a likelihood ratio model to map landslide susceptibility in and around the city of İzmir in western Turkey. Parameters, such as lithology, slope gradient, slope aspect, faults, drainage lines, and roads, were considered. Landslide susceptibility maps were produced using each of the three methods and then compared and validated. Before the modeling and validation, the observed landslides were separated into two groups. The first group was for training, and the other group was for validation steps. The accuracy of models was measured by fitting them to a validation set of observed landslides. For validation process, the area under curvature (AUC) approach was applied. According to the AUC values of 0.810, 0.764, and 0.710 for logistic regression, likelihood ratio, and multi-criteria decision analysis, respectively, logistic regression was determined to be the most accurate method among the other used landslide susceptibility mapping methods. Based on these results, logistic regression and likelihood ratio models can be used to mitigate hazards related to landslides and to aid in land-use planning.  相似文献   

17.
The logistic regression and statistical index models are applied and verified for landslide susceptibility mapping in Daguan County, Yunnan Province, China, by means of the geographic information system (GIS). A detailed landslide inventory map was prepared by literatures, aerial photographs, and supported by field works. Fifteen landslide-conditioning factors were considered: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, STI, SPI, and TWI were derived from digital elevation model; NDVI was extracted from Landsat ETM7; rainfall was obtained from local rainfall data; distance to faults, distance to roads, and distance to rivers were created from a 1:25,000 scale topographic map; the lithology was extracted from geological map. Using these factors, the landslide susceptibility maps were prepared by LR and SI models. The accuracy of the results was verified by using existing landslide locations. The statistical index model had a predictive rate of 81.02%, which is more accurate prediction in comparison with logistic regression model (80.29%). The models can be used to land-use planning in the study area.  相似文献   

18.
This case study presented herein compares the GIS-based landslide susceptibility mapping methods such as conditional probability (CP), logistic regression (LR), artificial neural networks (ANNs) and support vector machine (SVM) applied in Koyulhisar (Sivas, Turkey). Digital elevation model was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index, normalized difference vegetation index, distance from settlements and roads were used in the landslide susceptibility analyses. In the last stage of the analyses, landslide susceptibility maps were produced from ANN, CP, LR, SVM models, and they were then compared by means of their validations. However, area under curve values obtained from all four methodologies showed that the map obtained from ANN model looks like more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results also showed that the CP is a simple method in landslide susceptibility mapping and highly compatible with GIS operating features. Susceptibility maps can be easily produced using CP, because input process, calculation and output processes are very simple in CP model when compared with the other methods considered in this study.  相似文献   

19.
The purpose of this study was to develop techniques for landslide susceptibility using artificial neural networks and then to apply these to the selected study area at Janghung in Korea. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use. Thirteen landslide-related factors were extracted from the spatial database. These factors were then used with an artificial neural network to analyze landslide susceptibility. Each factor's weight was determined by the back-propagation training method. Five different training sets were applied to analyze and verify the effect of training. Then the landslide susceptibility indices were calculated using the back-propagation weights, and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. Landslide locations were used to verify results of the landslide susceptibility maps and to compare them. The artificial neural network proved to be an effective tool for analyzing landslide susceptibility.  相似文献   

20.
This paper presents landslide susceptibility analysis around the Cameron Highlands area, Malaysia using a geographic information system (GIS) and remote sensing techniques. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten landslide occurrence factors were selected as: topographic slope, topographic aspect, topographic curvature and distance from drainage, lithology and distance from lineament, soil type, rainfall, land cover from SPOT 5 satellite images, and the vegetation index value from SPOT 5 satellite image. These factors were analyzed using an advanced artificial neural network model to generate the landslide susceptibility map. Each factor’s weight was determined by the back-propagation training method. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights, and finally, the landslide susceptibility map was generated using GIS tools. The results of the neural network model suggest that the effect of topographic slope has the highest weight value (0.205) which has more than two times among the other factors, followed by the distance from drainage (0.141) and then lithology (0.117). Landslide locations were used to validate the results of the landslide susceptibility map, and the verification results showed 83% accuracy. The validation results showed sufficient agreement between the computed susceptibility map and the existing data on landslide areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号