首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有机质含量对淤泥固化效果影响的试验研究   总被引:10,自引:8,他引:10  
范昭平  朱伟  张春雷 《岩土力学》2005,26(8):1327-1330
淤泥固化技术是淤泥资源化利用的一个重要方法,而有机质对淤泥固化效果的影响是淤泥固化技术研究中的重要课题。在淤泥固化的试验研究中发现有机质含量对淤泥固化的效果有着显著影响。通过对不同有机物含量的固化试验揭示了该种影响的规律,发现淤泥中的有机质存在着一个极限含量4.3 %,当超过这一极限含量后,有机质量的增加不再对固化效果产生更大的影响。根据这一研究结果,提出了对于高有机质淤泥采用水泥-石膏进行固化的方法。  相似文献   

2.
The copper (Cu) distributions and speciation in the surface sediment collected from Nansi Lake (NL) (China) were investigated by chemical and physical fractionation methods. Sediment was first fractionated into four grain size fractions (< 63, 78–163, 163–280, and > 280 μm) in wet condition. Each fraction was then further divided into two density sub-fractions (low and heavy) by flotation in sodium-polytungstate solution (ρ = 2.0 g/cm3). In addition, a three-stage extraction procedure following the European Communities Bureau of Reference (BCR) protocol was applied to study the speciation distribution of Cu among grain size fractions. It was found that the speciation distributions of Cu among different grain size fractions were quite close to each other, although the total Cu concentrations were different in the individual fractions. Moreover, Cu mainly occurred in the coarser, low density, OC-rich fractions. Extractable Cu, which was dominated by reducible and oxidizable parts, occupied almost 80% of the total Cu concentration. Total Cu concentrations in grain size fractions and density sub-fractions ranged from 29.6 to 72.9 and from 21.4 to 156 mg/kg dw, respectively. It was noted that low-density fractions had 4–7 times higher Cu concentrations and 5–12 times higher organic carbon (OC) content than those in high-density fractions. The results demonstrated that OC was a main factor influencing Cu distributions in either grain size or density fractionated sediment. This study suggests that the role of the Cu-rich fraction should be considered when conducting the remediation of Cu contamination in NL.  相似文献   

3.
有机质是海相软土的重要组成部分,其对土体物理力学性质的影响有待深入研究。以连云港地区全新世海相软土为例,进行百组土体有机质物理力学试验。结果表明,研究区软土有机质含量平均值为0.98%,在0.90%~1.00%这个区间分布最为广泛。有机质含量在空间上分布不均,平行海岸线较垂直海岸线土体有机质含量变化小,自上向下变化规律复杂,但随着深度的增加有机质含量有增加的趋势;有机质含量与土体天然含水率、塑限、液限在0.01水平上显著正相关,与土体天然密度、干密度和比重在0.01水平上显著负相关,与土体粉粒含量在0.05水平上显著正相关,与土体黏粒含量相关性差;有机质含量与固结压力≤400 kPa阶段的孔隙比在0.01水平上显著正相关,与固结压力>400 kPa时的孔隙比相关性变差,这与有机质形成的复合体被破坏有关;海相软土黏土矿物、含盐量及含水率高,有机质与黏土矿物在碱性环境多通过阳离子键桥的方式来结合,形成有机复合体,可能参与千年及万年尺度的碳循环;研究土层最大埋深达30 m,符合有机质深埋的演化规律,而研究土体沉积时间距今最高才约8000 a,推测研究土体有机质还未达到平衡状态,还在进一步的循环演化过程当中。上述相关研究成果对海相软土分布区工程建设具有一定的参考价值。  相似文献   

4.
运用普通克里格、泛克里格、协同克里格和回归克里格4种方法,结合由DEM获取的高程因子以及土壤全氮和阳离子交换量(CEC),预测了黑龙江省海伦市耕地有机质含量的空间分布。不同样点数量下海伦市土壤有机质含量的空间变异结构分析表明,样点数量多并不一定能够识别土壤有机质含量的结构性连续组分,最优化的布置采样点位置可能比单纯增加...  相似文献   

5.
Carbon and nitrogen elemental (C-N, wt%) and isotopic (δ13C-δ15N, ‰) investigation has been carried out on alluvial and deltaic soils from the Padanian plain (northern Italy), an area interested by intensive agricultural activities, to refine previous inferences on depositional facies, pedogenetic processes and anthropogenic influences. Soil analysis, carried out by EA-IRMS, have been focused on inorganic and organic fractions properly speciated by a thermally-based method, whereas further insights on the organic matter constituents have been obtained by sequential fractionation. The bulk EA-IRMS analyses reveal a remarkable compositional heterogeneity of the investigated soils (TC 0.89 to 11.93?wt%, TN 0.01 to 0.78?wt%, δ13CTC -1.2 to -28.2‰, δ15N -1.2 to 10.0‰) that has to be explained as an integration between inorganic and organic pools. The latter have been subdivided in Non-Extractable Organic Matter (NEOM, δ13C -16.3 to -28.6‰) and in extractable fractions as Fulvic (FA, δ13C -24.7 to -27.5‰, δ15N 0.6 to 5.7‰) and Humic (HA, δ13C -24.6 to -27.0‰, δ15N 1.0 to 9.7‰) Acids, which have been used to infer soil dynamics and Soil Organic Matter (SOM) stability processes. Results indicate that SOM at depth of 100?cm was generally affected by microbial reworking, with the exception of clayey and peaty deposits in which biological activity seems inhibited. Peaty and clayey soils display an organic fraction loss of ca. 20% toward the surface, suggesting deterioration possibly induced by intensive agricultural activities. These latter may be the cause of the ubiquitous losses of organic fraction throughout the investigated area over the last seventy years, evaluated by the comparison with historical data on corresponding topsoils. The obtained insights are very important because these soils are carbon (and nitrogen) sinks that are vulnerable and can be degraded, loosing agricultural productivity and potentially contributing to greenhouse gases fluxes.  相似文献   

6.
1IntroductionSoilorganicmatter (SOM)isakeysourceofnutrientsforplantgrowth ,itisessentialforthemaintenanceofsoilstructureanditcontributestotheabilityofsoiltoretainnutrientsandwater.AnimprovedunderstandingofSOMdynamicsiscentraltothedevelopmentofmoreenvironmentallysoundandsustainablepracticesofagriculturalmanagement (Collinsetal.,2 0 0 0 ) .Avarietyofcon ceptualmethodshavebeenusedtodescribetheprocessesofSOMaccumulationandturnover (Jen kinsonandRayner,1 977;Duxburyetal.1 989;Partonetal.,1 99…  相似文献   

7.
Arsenic (As) sorptivity and acetate (pH 4.8) and oxalate (pH 3.0) extractable iron levels were monitored for 180 d, during and after flooding of two As contaminated soils. The effects of three different organic matter supplements/amendments, for example farm yard manure (FYM), municipal solid waste compost (MSWC) and sewage-sludge (SS) on the above parameter were also examined. In nonflooded soils, As sorptivity was mainly influenced by clay content. On flooding, there were large increases in acetate, oxalate extractable iron and As sorptivity. Organic matter addition increased the same parameters. Among the organic matters, SS showed greater effect on As sorption followed by MSWC and FYM. During flooding, As sorption is mainly dependent upon poorly crystalline iron oxide. During oxidation of previously flooded soils, levels of As sorptivity, acetate and oxalate extractable iron decreased rapidly, but did not return to the levels occurring before reduction. SS and MSWC served as binding agents for native and irrigation water As, thereby moderating the rapid As mobilization to the crop rizosphere.  相似文献   

8.
 This paper deals with the problem of increased heavy metal constituents in agricultural soils due to the expanded use of fertilizers and elevated atmospheric deposition. It discusses the extent of contamination in soil and establishes an environmental monitoring program in the chosen area of concern in the southern coastal region of Texas. Grain size, pH, and metals (Cu, Cd, Zn, Pb, Ni, Ba, As, Cr, Mn, and Fe) were determined in soils of the middle Rio Grande basin. The soils were mainly of sand texture and alkaline in character. Fine sand constituted the major proportion of the soil, and clay and silt ranged from 8–30% of the soil. Correlations of metal concentrations to grain size and iron contents were performed. Metals, except Cd and Pb, gave positive to negative relationships with decreases in grain size. Silt gave no relationship with metal content while clay and silt had a positive relationship. All these metals had a positive correlation with iron in the soil. The results indicate metals are associated with coarse sand, clay, and iron hydroxides surfaces of the soil. The comparison of metal content in soil of the middle Rio Grande basin with metals from other areas of the world suggests that it is relatively uncontaminated. Received: 14 December 1998 · Accepted: 19 Jaunuary 1999  相似文献   

9.
Testate amoebae are increasingly used for environmental monitoring as well as paleoenvironmental reconstructions. Paleoecological interpretations of testate amoebae assemblages depend on the understanding of the ecological processes operating today. We then ask the question of the link between testate structure and its environment. This study analyses both the grain size and mineralogical assemblage of tests of common species belonging to the genus Centropyxis and Difflugia. It is concluded that grain size is a limiting factor for test construction, whereas mineral composition is not. Hence, when analyzing agglutinated testate amoebae for paleoenvironmental reconstructions, it should be taken into account the mean grain size of the sediment. A non-appropriate grain-size probably inhibits the development of a testate amoebae specific assemblage.  相似文献   

10.
Grain size trends have been applied in many diverse sedimentary environments to determine sediment transport paths, generally coinciding with information from tracer studies, current measurements and the orientation of sedimentary structures. The different methods proposed to date are critically analysed and compared with reference to recent field studies. It is concluded that the two-dimensional methods produce comparable results and may in fact complement each other.In spite of the advances, several problems still exist, which include the sampling method and density, the choice of trend types, the relative weight of grain size parameters and the interpretation of results. These are discussed together with possible solutions.  相似文献   

11.
In highlands of semiarid Turkey, ecosystems have been significantly transformed through human actions, and today changes are taking place very rapidly, causing harmful consequences such as soil degradation. This paper examines two neighboring land use types in Indagi Mountain Pass, Cankiri, Turkey, to determine effects of the conversion of Blackpine (Pinus nigra Arn. subsp. pallasiana) plantation from grassland 40 years ago on soil organic carbon (SOC) and soil erodibility (USLE-K). For this purpose, a total of 302 disturbed and undisturbed soil samples were taken at irregular intervals from two sites and from two soil depths of 0–10 cm (D1) and 10–20 cm (D2). In terms of SOC, conversion did not make any statistical difference between grassland and plantation; however, there were statistically significant differences with soil depth within each land use, and SOC contents significantly decreased with the soil depth (P < 0.05) and mostly accumulated in D1. SOC values were 2.4 and 1.8% for grassland and 2.8 and 1.6% for plantation, respectively, at D1 and D2. USLE-K values also statistically differed significantly with the land use, and in contrast to the statistics of SOC, there was no change in USLE-K with the soil depth. Since USLE-K was estimated using SOC, hydraulic conductivity (HC) and soil textural composition––sand (S), silt (Si), and clay (C) contents of soils––as well as SOC did not change with the land use, we ascribed the changes of USLE-K with the land uses to the differences in the HC as strongly affected by the interactions between SOC and contents of S, Si, and C. On an average, the soil of the grassland (USLE-K = 0.161 t ha h ha−1 MJ−1 mm−1) was more erodible than those of the plantation (USLE-K = 0.126 t ha h ha−1 MJ−1 mm−1). Additionally, topographic factors, such as aspect and slope, were statistically effective on spatial distribution of the USLE-K and SOC.  相似文献   

12.
郭印  徐日庆  邵玉芳  齐静静 《岩土力学》2006,27(Z1):534-538
通过无侧限抗压强度试验对比分析了有机质含量、水泥和石膏掺量对水泥固化土和XGL2005固化土强度形成规律的影响。分析结果表明,XGL2005固化土的强度均不同程度地高于水泥固化土的强度,而且强度增长也快于水泥固化土。结合抗压强度试验和扫描电镜试验分析了固化土微观结构变化和强度发展之间的对应关系。  相似文献   

13.
Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady, uniform flow, and other simplifications that are not met in the Colorado River, the results nevertheless support the idea that changes in bed-sand grain size are much more important than changes in bed-sand area in regulating the concentration of suspended sand.  相似文献   

14.
Several recent studies have highlighted the importance of soil organic matter (SOM) mineralization at high latitudes during winter for ecosystem carbon (C) balances, and the ability of the soil to retain unfrozen water at sub-zero temperatures has been shown to be a major determinant of C mineralization rates. Further, SOM is believed to strongly influence the liquid water contents in frozen surface layers of boreal forest soils and tundra, but the mechanisms and specific factors involved are currently unknown. Here we evaluate the effects of the chemical composition of SOM on the amount of unfrozen water, the pore size equivalents in which unfrozen water can exist, and the microbial heterotrophic activity at sub-zero temperatures in boreal forest soils. To do this, we have characterized the chemical composition of SOM in forest soil samples (surface O-horizons) using solid state CP-MAS (cross polarization magic angle spinning) NMR spectroscopy. The acquired information was then used to elucidate the extent to which different fractions of SOM can explain the observed variations in unfrozen water content, pore size equivalents, and biogenic CO2 production rates in the examined soil samples under frozen conditions (−4 °C). The data evaluation was done by the use of principal component analysis (PCA) and projections to latent structures by means of partial least square (PLS). We conclude that aromatic, O-aromatic, methoxy/N-alkyl and alkyl C are the major SOM components affecting frozen boreal forest soil’s ability to retain unfrozen water and sustain heterotrophic activity (95% confidence level). Our results reveal that solid carbohydrates have a significant negative impact (95% confidence level) on CO2 production in frozen boreal spruce forest soils, in contrast to the positive effects of carbohydrate polymers during unfrozen conditions. We conclude that the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze. The effect of SOM composition on pore size distribution and unfrozen water content has a superior influence on SOM mineralization and hence on heterotrophic CO2 production of frozen soils.  相似文献   

15.
Deformation of middle crustal shear zones likely varies with time as a result of the stress build-up and release associated with earthquakes and post-seismic deformation, but the processes involved and their microstructural signature in the rock record are poorly understood. We conducted a series of experiments on quartzite at 900 °C to characterize microstructures associated with changes in stress and strain rate, and to investigate the feasibility of carrying out grain size piezometry in natural rocks that experienced analogous changes. Differential stress (referred to simply as “stress”) was varied in two-stage experiments by changing strain rate and by stopping the motor and allowing stress to relax. The two-stage samples preserve a microstructural record that can be interpreted quantitatively in terms of stress history. The microstructure associated with a stress increase is a bimodal distribution of recrystallized grain sizes. The smaller grains associated with the second deformation stage accurately record the stress of the second stage, and the surviving coarse grains remain similar in size to those formed during the earlier stage. The transient microstructure associated with stress decrease is a “partial foam” texture containing a larger concentration of stable 120° triple junctions than occur in samples deformed at a relatively constant strain rate. Our results indicate that microstructures preserved in rocks that experienced relatively simple, two-stage deformation histories can be used to quantitatively assess stress histories.Grain growth rates during deformation are similar to rates observed in previous isostatic growth experiments, supporting theoretical approaches to recrystallized grain size, such as the wattmeter theory (Austin and Evans, 2007), that incorporate static growth rates. From an analysis of the experimental data for quartz recrystallized grain size, we find: 1) Recrystallized grain size quickly reaches a value consistent with ambient deformation conditions. We argue that this explains a good match between average grain sizes predicted by the wattmeter after complete recrystallization and the recrystallized grain sizes of the experiments. 2) The present formulation of the wattmeter overestimates the rates at which porphyroclasts recrystallize by as much as an order of magnitude, and 3) owing to problems with extrapolation of grain growth data for quartz, the wattmeter is not presently applicable to natural samples deformed at low temperatures. We present a simplified flow law for quartz, and suggest that the change in slope of the quartz piezometer at high stress (regime 1) is related to a switch to a linear viscous rheology.  相似文献   

16.
Different from previous studies on effect of weathering upon geochemical variation along a single weathered profile, this paper provides a new methodology validated by comparing a weathered outcrop samples and their stratigraphic counterpart un-weathered core samples in a nearby shallow borehole. This outcrop and borehole penetrated the Ordovician-Silurian Wufeng–Longmaxi shales, located in the same anticline structure in the northern part of Guizhou Province, Southern China. The mineral composition, major, trace and rare earth elements (REEs) composition and Rock-Eval parameters of outcrop and core samples were analyzed and compared. Organic matter (OM) was observed in the microscope and extracted for elements analysis. The results show that short-term weathering still has significant influence on OM, mineral and elemental composition of black shales. The elements composition shows the outcrop profile was moderately weathered. The REEs compositions do not alter much during weathering process and the REEs composition and their relative ratios still are valid for rock origin determination. The OM, mainly composed by graptolite and bitumen, even entering the highly-over thermal maturity, is still sensitive to the weathering with a systematic loss 30–50% of TOC along the outcrop profile, which suggests that the OM consumption is predominantly controlled by weathering duration and the distance from the weathering surface. In turn, OM has significant influence on the trace elements transportation behavior during weathering. Some trace elements associated with the OM such as V, Cr, Th, U, Ni and Co, change significantly in their absolute concentration during weathering, but their relative ratios do not necessarily change too much and might be still reliable proxies for paleo-environmental determination. The mobility of shale minerals during weathering is in the following order: plagioclase?>?potassium feldspar and dolomite >pyrite and OM. Short-term weathering can also result in considerable transportation of elements and significant variation of minerals content in black shale, which may pose potentially high environmental and engineering risk in the regions rich in black shale.  相似文献   

17.
N has a controlling effect on litter biodegradation in the forest floor, while stabilization of organic matter in the mineral soil may be influenced by physical parameters related to soil texture. In this study, in order to understand the processes involved in soil organic matter (SOM) formation, the chemical composition of SOM was followed and evaluated with regards to N contents and soil texture. Samples were taken on sites covered with Norway spruce and displaying contrasting values of C/N ratios in the forest floor. The chemical structure of OM was characterized using solid-state CPMAS 13C and 15N nuclear magnetic resonance (NMR) spectroscopy, along with Proton Spin Relaxation Editing (PSRE) sequences. Four groups of sampling sites were defined based on the NMR spectra of Oh and A horizons. In each group displaying similar NMR characteristics, N content and soil texture could be highly different among sites. Some Oh horizons with similar NMR spectra had very different N contents. Highly humified OM in Oh horizons were observed mainly on sites with low N contents. Some A horizons with different soil texture displayed similar OM chemical structure. High contents of O-alkyl C in some A horizons could originate from higher fresh root material input.  相似文献   

18.
This paper reports on laboratory results on the composition, structure, and properties of frozen and thawed soils on the western coast of the Baydaratata Bay. Experimental data that focus on the unfrozen water content and thermal properties of different soils are discussed and summarized. This effects of soil salinity and organic matter content on these properties were evaluated for frozen and thawed soils.  相似文献   

19.
Urban roadside soils are important environmental media for assessing heavy metal concentrations in urban environment. However, among other things, heavy metal concentrations are controlled by soil particle grain size fractions. In this study, two roadside sites were chosen within the city of Xuzhou (China) to reflect differences in land use. Bulk soil samples were collected and then divided by particle diameter into five physical size fractions, 500–250, 250–125, 125–74, 74–45, < 45 μm. Concentrations of metals (Ti, Cr, Al, Ga, Pb, Ba, Cd, Co, Cu, Mn, Ni, V, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) were determined for each individual fraction. These metals could be roughly classified into two groups: anthropogenic element (Pb, Ba, Cd, Cu, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) and lithophile element (Ti, Cr, Al, Ga, Co, Mn, Ni, V) in terms of values of enrichment factor. As expected, higher concentrations of anthropogenic heavy metals (Cu, Zn, Mo, As, Hg, Bi, Ag) are observed in the finest particle grain size fraction (i.e. < 45 μm). However, heavy metals Se, Sb and Ba behave independently of selected grain size fractions. From the viewpoint of mass loading, more than 30% of the concentrations for all anthropogenic heavy metals are contributed by the particle grain size fractions of 45–74 μm at site 1 and more than 70% of the concentrations for all heavy metals are contributed by the particle grain size fractions of 45–74 and 74–125 μm at site 2. These results are important for transport of soil-bound heavy metals and pollution control by various remedial options.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号