首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We argue for implementing star formation on a viscous time-scale in hydrodynamical simulations of disc galaxy formation and evolution. Modelling two-dimensional isolated disc galaxies with the Bhatnagar–Gross–Krook (BGK) hydrocode, we verify the analytic claim of various authors that if the characteristic time-scale for star formation is equal to the viscous time-scale in discs, the resulting stellar profile is exponential on several scalelengths whatever the initial gas and dark matter profile. This casts new light on both numerical and semi-analytical disc formation simulations that either (a) commence star formation in an already exponential gaseous disc, (b) begin a disc simulation with conditions known to lead to an exponential, i.e. the collapse of a spherically symmetric nearly uniform sphere of gas in solid-body rotation under the assumption of specific angular momentum conservation, or (c) in simulations performed in a hierarchical context, tune their feedback processes to delay disc formation until the dark matter haloes are slowly evolving and without much substructure so that the gas has the chance to collapse under conditions known to give exponentials. In such models, star formation follows a Schmidt-like law, which for lack of a suitable time-scale, resorts to an efficiency parameter. With star formation prescribed on a viscous time-scale, however, we find gas and star fractions after ∼12 Gyr that are consistent with observations without having to invoke a 'fudge factor' for star formation. Our results strongly suggest that despite our gap in understanding the exact link between star formation and viscosity, the viscous time-scale is indeed the natural time-scale for star formation.  相似文献   

2.
Galaxy discs are characterized by star formation histories that vary systematically along the Hubble sequence. We study global star formation, incorporating supernova feedback, gas accretion and enriched outflows in discs modelled by a multiphase interstellar medium in a fixed gravitational potential. The star formation histories, gas distributions and chemical evolution can be explained in a simple sequence of models which are primarily regulated by the cold gas accretion history.  相似文献   

3.
The relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in the grand‐design galaxy NGC 628 were studied. We found that the radial distribution of the average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5–5 kpc. There are no correlations between the radial distributions of the average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of the average star formation rate in star formation regions in spiral arms and the H I column density. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Gas processes affecting star formation are reviewed with an emphasis on gravitational and magnetic instabilities as a source of turbulence. Gravitational instabilities are pervasive in a multi-phase medium, even for sub-threshold column densities, suggesting that only an ISM with a pure-warm phase can stop star formation. The instabilities generate turbulence, and this turbulence influences the structure and timing of star formation through its effect on the gas distribution and density. The final trigger for star formation is usually direct compression by another star or cluster. The star formation rate is apparently independent of the detailed mechanisms for star formation, and determined primarily by the total mass of gas in a dense form. If the density distribution function is a log-normal, as suggested by turbulence simulations, then this dense gas mass can be calculated and the star formation rate determined from first principles. The results suggest that only 10-4 of the ISM mass actively participates in the star formation process and that this fraction does so because its density is larger than 105 cm-3, at which point several key processes affecting dynamical equilibrium begin to break down. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.  相似文献   

6.
We present the results of a set of three-dimensional SPH-Treecode simulations which model the formation and early evolution of disc galaxies, including the generation and return of heavy elements to the interstellar medium by star formation. Starting from simple initial conditions which are given by a uniform density sphere of gas which is embedded in a dark matter halo and in solid-body rotation, we are able to form realistic disc galaxies, and find that an exponential gas disc is quickly formed. Star formation within this exponential disc naturally leads to the formation of abundance gradients which are in broad agreement with those observed, although they are slightly shallower than some observations.
We investigate the systematic effects of variation of mass, rotation and star formation parameters on the abundance gradients. We find that the abundance gradients are most sensitive to changes in the star formation parameters or rotation. Including a critical-density cut-off in the star formation law causes abundance gradients to be steepened.
Analysis of gas flows within the models shows radial flows which are a function of angle of azimuth around the galaxies, with alternating inward and outward flows. This motion is linked to the presence of a bar, whose strength is related to the amount of star formation in the models, and there is a gentle drift of mass inwards. The shallow abundance gradients may be linked to these radial flows.  相似文献   

7.
We investigate the relationship between the star formation rate per unit area and the surface density of the interstellar medium (ISM; the local Kennicutt–Schmitt law) using a simplified model of the ISM and a simple estimate of the star formation rate based on the mass of gas in bound clumps, the local dynamical time-scales of the clumps and an efficiency parameter of around  ε≈ 5  per cent. Despite the simplicity of the approach, we are able to reproduce the observed linear relation between star formation rate and surface density of dense (molecular) gas. We use a simple model for the dependence of H2 fraction on total surface density to argue why neither total surface density nor the H  i surface density is a good local indicator of star formation rate. We also investigate the dependence of the star formation rate on the depth of the spiral potential. Our model indicates that the mean star formation rate does not depend significantly on the strength of the spiral potential, but that a stronger spiral potential, for a given mean surface density, does result in more of the star formation occurring close to the spiral arms. This agrees with the observation that grand design galaxies do not appear to show a larger degree of star formation compared to their flocculent counterparts.  相似文献   

8.
A model of supernova feedback in galaxy formation   总被引:3,自引:0,他引:3  
A model of supernova feedback during disc galaxy formation is developed. The model incorporates infall of cooling gas from a halo, and outflow of hot gas from a multiphase interstellar medium (ISM). The star formation rate is determined by balancing the energy dissipated in collisions between cold gas clouds with that supplied by supernovae in a disc marginally unstable to axisymmetric instabilities. Hot gas is created by thermal evaporation of cold gas clouds in supernova remnants, and criteria are derived to estimate the characteristic temperature and density of the hot component and hence the net mass outflow rate. A number of refinements of the model are investigated, including a simple model of a galactic fountain, the response of the cold component to the pressure of the hot gas, pressure-induced star formation and chemical evolution. The main conclusion of this paper is that low rates of star formation can expel a large fraction of the gas from a dwarf galaxy. For example, a galaxy with circular speed 50 km s1 can expel 6080 per cent of its gas over a time-scale of 1 Gyr, with a star formation rate that never exceeds 0.1 M yr1. Effective feedback can therefore take place in a quiescent mode and does not require strong bursts of star formation. Even a large galaxy, such as the Milky Way, might have lost as much as 20 per cent of its mass in a supernova-driven wind. The models developed here suggest that dwarf galaxies at high redshifts will have low average star formation rates and may contain extended gaseous discs of largely unprocessed gas. Such extended gaseous discs might explain the numbers, metallicities and metallicity dispersions of damped Lyman systems.  相似文献   

9.
We investigate the atomic and molecular interstellar medium and star formation of NGC 275, the late-type spiral galaxy in Arp 140, which is interacting with NGC 274, an early-type system. The atomic gas (H  i ) observations reveal a tidal tail from NGC 275 which extends many optical radii beyond the interacting pair. The H  i morphology implies a prograde encounter between the galaxy pair approximately ∼1.5 × 108 yr ago. The Hα emission from NGC 275 indicates clumpy irregular star formation, clumpiness which is mirrored by the underlying mass distribution as traced by the K s-band emission. The molecular gas distribution is striking in its anticorrelation with the H  ii regions. Despite the evolved nature of NGC 275's interaction and its barred potential, neither the molecular gas nor the star formation is centrally concentrated. We suggest that this structure results from stochastic star formation leading to preferential consumption of the gas in certain regions of the galaxy. In contrast to the often-assumed picture of interacting galaxies, NGC 275, which appears to be close to merger, does not display enhanced or centrally concentrated star formation. If the eventual merger is to lead to a significant burst of star formation it must be preceded by a significant conversion of atomic to molecular gas as at the current rate of star formation all the molecular gas will be exhausted by the time the merger is complete.  相似文献   

10.
We have constructed a dynamo model for the magnetic field in spiral galaxies that takes into account the differences in star formation rates in different galaxies. The difficulty in constructing the model is that the star formation rate does not enter directly into the equations of magnetohydrodynamics, which include only the root-mean-square velocity of the interstellar gas, its density, and the half-thickness of the ionized gas disk. We propose a parametrization of these quantities that relates them to the star formation rate and investigate our model in terms of the so-called no-z approximation, which neglects the details of the magnetic field structure in a direction perpendicular to the galactic disk. The influence of the star formation rate on the galactic dynamo is a threshold one. This influence is small at moderate star formation rates and significant only at very high star formation rates. If the starburst intensity reaches some critical level (exceeding that in the Milky Way by an order of magnitude), then the large-scale magnetic field is destroyed and it is restored only after completion of the starburst. We provide a list of galaxies that exhibit a fairly high star formation rate and that can be interesting to study their magnetic fields.  相似文献   

11.
One of interactions of young active stars with interstellar gas is excitation of shock waves, that compress the gas and favour the formation of new generation of stars. Thus, a positive feedback between stellar and gaseous constituents is realized. When spread from point to point this interaction gives rise to a stationary wave of star formation. The properties of such a wave are analyzed both in homogeneous and clumped media.The stationary wave of star formation is a natural mechanism that can provide a coherent behaviour (such as global star bursts) of large star-gas systems. Particularly, the origin of extreme and intermediate halo populations in our Galaxy are possibly produced by large-scale star burst, that was initiated by stationary wave of formation of Population III stars.  相似文献   

12.
Acounter-rotating gas disk has been detected in the SA0 galaxy IC 560 located at the periphery of a sparse group of six late-type galaxies. The pattern of gas excitation and mid-infrared colors are indicative of ongoing star formation within 1 kpc of the center. Outside the gas disk with star formation the large-scale stellar disk of the galaxy has an old age and a very low metallicity, [Z/H] ≈ ?1. The source of external gas accretion onto IC 560 is undetected; the only option is a single infall of a companion rich in high-metallicity gas.  相似文献   

13.
We present a picture of star formation around the H  ii region Sh2-235 (S235) based upon data on the spatial distribution of young stellar clusters and the distribution and kinematics of molecular gas around S235. We observed 13CO (1–0) and CS (2–1) emission toward S235 with the Onsala Space Observatory 20-m telescope and analysed the star density distribution with archival data from the Two Micron All-Sky Survey (2MASS). Dense molecular gas forms a shell-like structure at the southeastern part of S235. The young clusters found with 2MASS data are embedded in this shell. The positional relationship of the clusters, the molecular shell and the H  ii region indicates that expansion of S235 is responsible for the formation of the clusters. The gas distribution in the S235 molecular complex is clumpy, which hampers interpretation exclusively on the basis of the morphology of the star-forming region. We use data on kinematics of molecular gas to support the hypothesis of induced star formation, and distinguish three basic types of molecular gas components. The first type is primordial undisturbed gas of the giant molecular cloud, the second type is gas entrained in motion by expansion of the H  ii region (this is where the embedded clusters were formed) and the third type is a fast-moving gas, which might have been accelerated by winds from the newly formed clusters. The clumpy distribution of molecular gas and its kinematics around the H  ii region implies that the picture of triggered star formation around S235 can be a mixture of at least two possibilities: the 'collect-and-collapse' scenario and the compression of pre-existing dense clumps by the shock wave.  相似文献   

14.
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.  相似文献   

15.
We calculate chemical evolution models for four dwarf spheroidal (dSph) satellites of the Milky Way (Carina, Ursa Minor, Leo I and Leo II) for which reliable non-parametric star formation histories have been derived. In this way, the independently-obtained star formation histories are used to constrain the evolution of the systems we are treating. This allows us to obtain robust inferences on the history of such crucial parameters of galactic evolution as gas infall, gas outflows and global metallicities for these systems. We can then trace the metallicity and abundance ratios of the stars formed, the gas present at any time within the systems and the details of gas ejection, of relevance to enrichment of the galaxies environment. We find that galaxies showing one single burst of star formation (Ursa Minor and Leo II) require a dark halo slightly larger that the current estimates for their tidal radii, or the presence of a metal-rich selective wind that might carry away much of the energy output of their supernovae before this might have interacted and heated the gas content, for the gas to be retained until the observed stellar populations have formed. Systems showing extended star formation histories (Carina and Leo I), however, are consistent with the idea that their tidally-limited dark haloes provide the necessary gravitational potential wells to retain their gas. The complex time structure of the star formation in these systems remains difficult to understand. Observations of detailed abundance ratios for Ursa Minor strongly suggest that the star formation history of this galaxy might in fact resemble the complex picture presented by Carina or Leo I, but localized at a very early epoch.  相似文献   

16.
We combined optical Hubble Space Telescope ACS images with mid-infrared Spitzer data of the two young star clusters NGC346 and NGC602 in the Small Magellanic Cloud, to study how local and global conditions may affect the process of star formation. We found that, while general conditions such as metallicity, or the mass or morphological type of the parent galaxy do not strongly affect the process of star formation, local conditions such as the gas and stellar density can affect both how star formation occurs and propagates, and also the evolution of a star cluster from early times.  相似文献   

17.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

18.
We discuss the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence.Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. We develop the old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds.It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations we find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits.  相似文献   

19.
Luminous and Ultraluminous infrared galaxies (ULIRGs) contain the most intense regions of star formation in the local universe. Because molecular gas is the fuel for current and future star formation, the physical properties and distribution of the warm, dense molecular gas are key components for understanding the processes and timescales controlling star formation in these merger and merger remnant galaxies. We present new results from a legacy project on the Submillimeter Array which is producing high resolution images of a representative sample of galaxies with log L FIR >11.4 and D<200 Mpc.  相似文献   

20.
富坚 《天文学进展》2011,(4):473-476
星际气体是星系中重子物质的重要组成部分,其中的分子气体(主要是分子氢H2)以及原子气体(主要是中性氢HI)对于星系中发生的各个物理过程至关重要。本文在前人的星系形成和演化的半解析模型基础上,加入了描述星系盘中分子气体和原子气体成分的物理模型,来研究分子气体和原子气体对于星系形成和演化所起的作用。我们主要使用了马普天体物理所Munich Group的L-Galaxies半解析星系形成模型,并借鉴了星系化学演化模型的方法,把半解析模型中的每一个星系盘分成了多个同心圆圈,然后在每个圈中分别追踪气体下落、分子气体和原子气体转化、恒星形成、金属增丰、超新星爆发加热冷气体等发生在星系盘上的物理过程,并且每个同心圈都是独立演化的。在我们的模型中,一个基本假设是每个时间步内气体都是以指数形式下落到星系盘上,并且直接叠加在已有的气体径向面密度轮廓之上,其中指数盘的标长rd正比于星系所在暗物质晕的维里半径rvir与旋转参量λ的乘积。我们的模型使用了两种描述分子气体形成的模型:一种是基于Krumholz等人解析模型的结果,其中分子气体的比例与局域气体面密度以及局域气体金属丰度相关;另一种是分子气体比例与星际压强相关的模型,根据Obreschkow等人的近似,分子气体的比例与气体面密度以及恒星质量面密度相关。由于恒星形成过程发生在星际巨分子云之中,并且根据Leroy等人的观测结果,恒星形成率面密度近似正比于分子气体的面密度,因此我们在模型中使用了与分子气体面密度相关的恒星形成规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号