首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The behaviour of tetrahedrally coordinated and octahedrally coordinated Cr3+ ions in diopside is discussed from the study on the join CaMg-Si2O6-CaCrCrSiO6. The molecule CaCrCrSiO6 decomposes into uvarovite+eskolaite and its maximum solubility in diopside is 6.7 wt percent at 940 ° C. Crystalline phases are diopside ss (ss is abbreviation of solid solution), uvarovite ss, wollastonite ss, spinel and eskolaite. The diopside ss is blue in colour. Its optical spectra were measured in the wavelenght range of 325–2600 nm, and assigned after tetrahedral configuration Td and octahedral configuration Oh. It is estimated that octahedral Cr3+ ions are in high spin state, while tetrahedral Cr3+ ions may be probably in low spin state. The t and B are 10,300–10,370 cm–1 and 429–432 cm–1. The CFSE for tetrahedral low spin Cr3+ ions is nearly the same as that for octahedral high spin Cr3+ ions. The ionic radii of tetrahedral low spin Cr3+ ions calculated are 0.47–0.53 Å, shrinked from the radius of octahedral high spin Cr3+ ion (0.615 Å) as much as 14–24 percent. Petrologic implications of the result are also discussed.The first half of the D. Sc. dissertation of K. Ikeda presented to Hokkaido University in June, 1976  相似文献   

2.
Orange, ochre-coloured, light green and dark blue varieties of kyanite, ideally Al2SiO5, from Loliondo, Tanzania, have been characterised by electron microprobe analysis and polarised infrared and optical absorption spectroscopy. All colour varieties show elevated Fe contents of 0.39 to 1.31 wt.% FeO, but Ti contents only in the range of the EMP detection limit. Orange and ochre-coloured crystals have Mn contents of 0.23 and 0.06 wt.% MnO, respectively, the dark blue kyanite contains 0.28 wt.% Cr2O3, while the light green sample is nearly free from transition metal cations other than Fe. Polarised infrared spectra reveal OH defect concentrations of 3 to 17 wt.ppm H2O with structural OH defects partially replacing the OB (O2) oxygen atoms. Polarised optical absorption spectra show that the colour of all four varieties is governed by crystal field d-d transitions of trivalent cations, i.e. Fe3+ (all samples), Mn3+ (orange and ochre) and Cr3+ (blue kyanite), replacing Al in sixfold coordinated triclinic sites of the kyanite structure. Intervalence charge transfer, the prevalent colour-inducing mechanism in ‘usual’ (Cr-poor) blue kyanites, seems to play a very minor, if any, role in the present samples. Crystal field calculations in both a ‘classic’ tetragonal and in the semiempirical Superposition Model approach, accompanied by distance- and angle-least-squares refinements, indicate that Fe3+ preferably occupies the Al4 site, Cr3+ prefers the Al1 and Al2 sites, and Mn3+ predominantly enters the Al1 site. In each case specific local relaxation effects were observed according to the crystal chemical preferences of these transition metal cations. Furthermore, the high values obtained in the calculations for the interelectronic repulsion parameter Racah B correspond to a high ionic contribution to Me3+–O bonding in the kyanite structure. In the particular case of the blue sample, band positions specifically related to the high Racah B value enable this ‘unusual’ type of blue colouration of kyanite solely due to Cr3+ cations.  相似文献   

3.
For the first time ever, the luminescence spectra of Cr3+ centers in two chlorite crystals are presented. Chromium ions occupy the strong crystal-field site M4 in the brucite sheet and the intermediate crystal-field site in the inner octahedral sheet for purple and green chlorite, respectively. We discuss the influence of an effective positive charge on the Cr3+ ion and an effective negative charge of ligands on the differences in the values of the Dq and B parameters. It is concluded that the presence of Fe2+ ions and other point defects, as well as concentration quenching, causes the very short luminescence lifetimes of chromium ions.  相似文献   

4.
绿柱石族宝石颜色丰富,一直是市场上重要的宝石品种。几十年来,国内外学者对不同颜色绿柱石的致色机理及改色工艺开展了广泛的研究。铁离子作为重要的致色过渡金属离子之一,其价态调控是绿柱石改色工艺的关键,所以铁离子的价态、晶格占位和对应的致色作用也一直是绿柱石研究的焦点。铁离子被认为可能存在于绿柱石中的铝氧八面体Al3+格位、硅氧四面体Si4+格位、铍氧四面体Be2+格位、结构通道2a或2b位和晶格间隙6g位等位置,是蓝、绿或黄等颜色绿柱石的主要致色元素。本文通过对绿柱石的晶体结构、铁离子的核外电子排布和晶格占位等方面文献资料的梳理及综合分析,认为Fe2+和Fe3+分别对蓝色和黄色绿柱石的呈色起着主导作用。当Fe2+和Fe3+处于晶格中不同位置时致色作用的具体差异,仍有待于进一步研究。  相似文献   

5.
Orissa is an important area for gem variety of corundum deposits in India. Spectroscopic studies, such as ESR, OAS on samples from Sardapur, Orissa, were carried out to ascertain the colour cause of corundum. Electron spin resonance (ESR) spectroscopic study was carried out on the samples to detect the presence of paramagnetic ions i.e. Fe2+, Fe3+, Ti4+, Cr3+ and V3+ etc. The variable temperature experiment carried out to observe the effect of heating on peak valence state change in paramagnetic ions. Samples were cut and polished to obtain the optical absorption spectrum (OAS) to detect the colour causing transition ions/defect centres. The samples of gem variety were step heated up to 300°C for colour enhancement studies. EPMA analysis has revealed the low chromium concentration in the rubies. The varying hues of red in the corundum are due to the presence of bivalent and trivalent iron and charge transfer process along with Cr3+ absorption in the 550 nm region.  相似文献   

6.
A method for the prediction of Gibbs free energies of formation for minerals belonging to the alunite family is proposed, based on an empirical parameter ΔGO= Mz+(c) characterizing the oxygen affinity of the cation Mz+. The Gibbs free energy of formation from constituent oxides is considered as the sum of the products of the molar fraction of an oxygen atom bound to any two cations, multiplied by the difference of oxygen affinity ΔGO= Mz+(c) between any two consecutive cations. The ΔGO= Mz+(c) value, using a weighing scheme involving the electronegativity of a cation in a specific site (12-fold coordination site, octahedral and tetrahedral) is assumed to be constant. It can be calculated by minimizing the difference between experimental Gibbs free energies (determined from solubility measurements) and calculated Gibbs free energies of formation from constituent oxides. Results indicate that this prediction method gives values within 0.5% of the experimentally measured values. The relationships between ΔGO= Mz+(alunite) corresponding to the electronegativity of a cation in either dodecahedral sites, octahedral sites or tetrahedral sites and known as ΔGO= Mz+(aq) were determined, thereby allowing the prediction of the electronegativity of rare earth metal ions and trivalent ions in dodecahedral sites and highly charged ions in tetrahedral sites. This allows the prediction of Gibbs free energies of formation of any minerals of the alunite supergroup (bearing various ions located in the dodecahedral and tetrahedral sites). Examples are given for hydronium jarosite and hindsalite, and the results appear excellent when compared to experimental values.  相似文献   

7.
Natural specimens of green gemological euclase (chemical formula BeAlSiO4(OH)) from Brazil were investigated by electron paramagnetic resonance (EPR) and optical absorption. In addition to iron-related EPR spectra, analyzed recently in blue and colorless euclase, chromium and vanadium-related EPR spectra were also detected in green euclase. Their role as color causing centers is discussed. The results indicate that Cr3+ ions substitute for Al3+ ions in the euclase structure. The EPR rotation patterns of Cr3+ with electron spin S = 3/2 were analyzed with monoclinic spin Hamiltonian leading to the parameters of g xx , g yy and g zz equal to 2.018, 2.001 and 1.956 and electronic fine structure parameters of D = −8.27 GHz and E = 1.11 GHz, respectively, with high asymmetry ratio E/D = 0.13. For the vanadium-related EPR spectra the situation is different. It is concluded that vanadium is incorporated as the vanadyl radical VO2+ with electron spin S = 1/2 with nearly axial spin Hamiltonian parameters gzz = 1.9447, g xx  = 1.9740 g yy  = 1.9669 and axial hyperfine interactions due to the nuclear spin I = 7/2 of the 51V isotope leading to A zz  = 502 MHz, A xx  = 150 MHz and A yy  = 163 MHz. The green color of euclase is caused by two strong broad absorption bands centered at 17,185 and 24,345 cm−1 which are attributed to the 4A2g4T2g, 4T1g transitions of Cr3+, respectively. Vanadyl radicals may introduce some absorption bands centered in the near infrared with tail extending into the visible spectral range.  相似文献   

8.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   

9.
The influence on the structure of Fe2+ Mg substitution was studied in synthetic single crystals belonging to the MgCr2O4–FeCr2O4 series produced by flux growth at 900–1200 °C in controlled atmosphere. Samples were analyzed by single-crystal X-ray diffraction, electron microprobe analyses, optical absorption-, infrared- and Mössbauer spectroscopy. The Mössbauer data show that iron occurs almost exclusively as IVFe2+. Only minor Fe3+ (<0.005 apfu) was observed in samples with very low total Fe. Optical absorption spectra show that chromium with few exceptions is present as a trivalent cation at the octahedral site. Additional absorption bands attributable to Cr2+ and Cr3+ at the tetrahedral site are evident in spectra of end-member magnesiochromite and solid-solution crystals with low ferrous contents. Structural parameters a0, u and T–O increase with chromite content, while the M–O bond distance remains nearly constant, with an average value equal to 1.995(1) Å corresponding to the Cr3+ octahedral bond distance. The ideal trend between cell parameter, T–O bond length and Fe2+ content (apfu) is described by the following linear relations: a0=8.3325(5) + 0.0443(8)Fe2+ (Å) and T–O=1.9645(6) + 0.033(1)Fe2+ (Å) Consequently, Fe2+ and Mg tetrahedral bond lengths are equal to 1.998(1) Å and 1.965(1) Å, respectively.  相似文献   

10.
 This paper presents an improved generalisation of cation distribution determination based on an accurate fit of all crystal-chemical parameters. Cations are assigned to the tetrahedral and octahedral sites of the structure according to their scattering power and a set of bond distances optimised for spinel structure. A database of 295 spinels was prepared from the literature and unpublished data. Selected compositions include the following cations: Mg2+, Al3+, Si4+, Ti4+, V3+, Cr3+, Mn2+, Mn3+, Fe2+, Fe3+, Co2+, Ni2+, Zn2+ and vacancies. Bond distance optimisation reveals a definite lengthening in tetrahedral distance when large amounts of Fe3+ or Ni2+ are present in the octahedral site. This means that these cations modify the octahedral angle and hence the shared octahedral edge, causing an increase in the tetrahedral distance with respect to the size of the cations entering it. Some applications to published data are discussed, showing the capacity and limitations of the method for calculating cation distribution, and for identifying inconsistencies and inaccuracies in experimental data. Received: 19 February 2001 / Accepted: 1 June 2001  相似文献   

11.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

12.
Mössbauer spectra (MS) of blue, green and yellow beryl (ideally Be3Al2Si6O18) containing approximately 1% of iron were obtained at 295 and 500 K. Room temperature (RT) spectra of both blue and green samples showed the presence of an asymmetric Fe2+ doublet (ΔE Q~2.7 mm/s, δ~1.1 mm/s), with a very broad low-velocity peak. There is no clear evidence for the presence of a ferric component. The MS of the yellow sample at RT consists of an intense central absorption with parameters typical for Fe3+E Q~0.4 mm/s, δ~0.29 mm/s), plus an apparently symmetrical Fe2+ doublet. This sample acquires a light-blue shade upon heating in air at about 620 K. Thermal treatments at high temperatures caused no significant changes in the MS, but the green and yellow beryl acquire a blue colour. All these results are interpreted in relation to the existence of channel water and the distribution of iron among the available crystallographic sites.  相似文献   

13.
Olivine inclusions in diamonds from kimberlites originating from the deep Upper Mantle contain significant amounts of chromium. It has been suggested that divalent chromium occurs in these olivines. This hypothesis is supported by recent Mössbauer and electronic spectral measurements at high pressures, which demonstrate that pressure-induced reduction takes place in compounds and minerals initially containing Fe3+, Mn3+, and Cu2+ ions. The process is facilitated at high temperatures. Low oxidation states of other metals such as Cr(II) are expected to be stabilized under the very high pressures and elevated temperature conditions in the Mantle. Since Cr2+ ions are susceptible to the Jahn-Teller effect, they are predicted by crystal field theory to be stabilized in certain distorted coordination sites, such as the olivine Ml site, all three sites of the -spinel phase, and the 7-coordinated site of the strontium plumbate structure-type. The Cr2+ ions in olivines are stabilized in kimberlites intruded into the Crust by the high confining pressures in the diamond inclusions.  相似文献   

14.
The electron spin resonance (ESR) spectrum of Cr3+ in a synthetic single crystal of forsterite doped with Cr2O3 was studied at room temperature in the X-band frequency range. The dependence of the observed spectra on the crystal orientation with respect to the applied magnetic field was investigated. The ESR spectra are described by the spin Hamiltonian \(H = \beta HgS + D(S_Z^{\text{2}} - {\text{1/3}}S{\text{(}}S{\text{ + 1)) + }}E{\text{(}}S_x^{\text{2}} - S_y^{\text{2}} {\text{)}}\) with S=3/2. The spin resonance reveals that the chromium ions are located at both the M1 and M2 positions. Other possible substitutional or interstitial Cr3+ positions may be possible, but were not observed. The site occupancy numbers of Cr3+ at M1 and M2 are roughly 1.2×10?4 and 0.8×10?4, respectively, assuming that chromium is oxidized completely. The preference of the chromium ions for M1 was interpreted qualitatively in terms of crystal field criteria. The rhombic and axial spin Hamiltonian parameters, D and E, and the directions of the magnetic axes obtained for M1 and M2 are consistent with the respective oxygen coordination polyhedra.  相似文献   

15.
This paper is an extension of the earlier one dealing with kyanite in which the best fitting value of the oxygen ligand distance for Cr3+ is adopted to study the spectroscopic properties of Cr3+ ions doped at the two possible Al sites in the other two polymorphs of the aluminosilicate group (Al2O3 · SiO2), namely, andalusite and sillimanite. The superposition model and the crystal field analysis package recently developed for 3d ions doped at arbitrary low symmetry sites in crystals are used to predict energy levels and statevectors within the whole 3d 3 configuration. Then the values of the ground state zerofield splitting for Cr3+ ions at each Al sites in the two crystals are obtained. The splittings of the lower excited states 2 E and 4 T 2 as well as the admixture of 4 T 2 into 2 E have also been predicted. Comparison of our results with the available experimental data enable us to correlate the optical and EPR Spectroscopic properties with the substitutional Cr3+ sites. The conclusion is that in andalusite and sillimanite only the Al sites with nearly-octahedral six-fold coordination seem to be occupied by Cr3+ ions.  相似文献   

16.
Chromium L3,2 energy loss near-edge structures (ELNES) of nine chromium compounds were measured in a transmission electron microscope to study the effect of valence state and site geometry of chromium on spectral features. The compounds studied represent a set of standards with given valence state and coordination. The chromium coordination is either octahedral or tetrahedral with different degree of distortion. The distortion of polyhedra results in a loss of the fine detail of spectral features in Cr L3,2 ELNES spectra. The effect of valence state manifests in a systematic chemical shift of the ELNES spectra by about 2 eV per oxidation state for octahedrally coordinated Cr and 0.4–1.4 eV per oxidation state for tetrahedrally coordinated Cr. On the basis of collected Cr L3,2 ELNES spectra we propose a simple quantification technique for the determination of chromium oxidation state in oxidic compounds which is independent of the coordination.  相似文献   

17.
The crystal structure and chemical composition of crystals of (Mg1?x Cr x )(Si1?x Cr x )O3 ilmenite (with x = 0.015, 0.023 and 0.038) synthesized in the model system Mg3Cr2Si3O12–Mg4Si4O12 at 18–19 GPa and 1,600 °C have been investigated. Chromium was found as substitute for both Mg at the octahedral X site and Si at the octahedral Y site, according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a shortening of the <X–O> and a lengthening of the <Y–O> distances with respect to the values typically observed for pure MgSiO3 ilmenite and eskolaite Cr2O3. Although no high Cr contents are considered in the pyrolite model, Cr-bearing ilmenite may be the host for chromium in the Earth’s transition zone. The successful synthesis of ilmenite with high Cr contents and its structural characterization are of key importance because the study of its thermodynamic constants combined with the data on phase relations in the lower-mantle systems can help in the understanding of the seismic velocity and density profiles of the transition zone and the constraining composition and mineralogy of pyrolite in this area of the Earth.  相似文献   

18.
Two synthetic series of spinels, MgCr2O4–Fe2+Cr2O4 and MgCr2O4–MgFe2 3+O4 have been studied by Raman spectroscopy to investigate the effects of Fe2+ and Fe3+ on their structure. In the first case, where Fe2+ substitutes Mg within the tetrahedral site, there is a continuous and monotonic shift of the Raman modes A1g and Eg toward lower wavenumbers with the increase of the chromite component into the spinel, while the F2g modes remain nearly in the same position. In the second series, for low Mg-ferrite content, Fe3+ substitutes for Cr in the octahedral site; when the Mg-ferrite content nears 40 %, a drastic change in the Raman spectra occurs as Fe3+ starts entering the tetrahedral site as well, consequently pushing Mg to occupy the octahedral one. The Raman spectral region between 620 and 700 cm?1 is associated to the octahedral site, where three peaks are present and it is possible to observe the Cr–Fe3+ substitution and the effects of order–disorder in the tetrahedral site. The spectral range at 500–620 cm?1 region shows that there is a shift of modes toward lower values with the increase of the Mg-ferrite content. The peaks in the region at 200–500 cm?1, when observed, show little or negligible Raman shift.  相似文献   

19.
Ilvaite, Ca(Fe2+,Fe3+)Fe2+Si2O8(OH) shows two magnetic phase transitions, which have been studied by Mössbauer spectroscopy within the temperature range 120–4 K. The continued charge localization between Fe2+ and Fe3+ ions in octahedral A-sites causes the Fe2+-Fe3+ interaction to be ferromagnetic, although the overall magnetic order is antiferromagnetic. The thermal evolution of the hyperfine fields at the Fe2+ (A) and Fe3+ (A) sites indicates B hf: 328 and 523 kOe respectively at 0 K and T N1= 116K. The corresponding values for Fe2+ (B) site are: B hf 186 kOe and T N2=36K. An additional hyperfine field exists at the Fe2+(B) site within the temperature range 116–36K due to short-range order induced by the spin ordering in A sites. The considerable difference between the two magnetic transition temperatures is due to spin frustration, because the Fe2+ (B) site occurs on a corner common between two triangles with respect to two sets of Fe2+ (A) and Fe3+ (A) sites with opposite spin directions.  相似文献   

20.
 Polarized electronic single crystal spectra of natural Fe2+ ion-bearing oxygen-based minerals, in which ferrous ions enter octahedral sites of different symmetry and distortion (olivine, cordierite, ortho- and clinopyroxene, amphibole), eightfold sites in garnet (almandine) and clinopyroxene (M2), and tetrahedral sites in spinel, were studied at temperatures from 300 to ca. 600 K. In the minerals studied, the spin-allowed bands of Fe2+ display rather variable temperature behaviour. In most cases, due to the thermal expansion of the Fe2+-bearing polyhedra, bands shift to lower energies upon increasing temperature, though there are some exceptions to this rule: in cases of other than sixfold octahedral or close to octahedral coordination, in almandine and spinel the bands shift to higher energies, which can be explained by an increase in distortions of the Fe2+-bearing polyhedra. Splitting of the excited 5 E g-level of Fe2+ ions usually, but not always, increases with temperature, reflecting thermally induced increase in distortion of the Fe2+-bearing sites in the minerals studied. Integral intensities of the bands in question do not always obey the general rule, according to which intensity should increase with temperature, when the 3d N-centred site is centrosymmetric, or should remain unchanged when the 3d N site lacks an inversion centre. The experimental results show that the response of the characteristics of absorption bands such as width, intensity and energy caused by dd transitions of Fe2+ in oxygen-based minerals to increasing temperature is not always uniform and is at variance with expectation. This temperature dependence cannot be used directly to solve band assignment problems, as earlier proposed in the literature. Received: 22 December 1999 / Accepted: 30 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号