首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the non-Gaussianity induced by the Sunyaev–Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP . This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP –2MASS cross-correlations by a factor f 2, which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.  相似文献   

2.
We investigate the relative sensitivities of several tests for deviations from Gaussianity in the primordial distribution of density perturbations. We consider models for non-Gaussianity that mimic that which comes from inflation as well as that which comes from topological defects. The tests we consider involve the cosmic microwave background (CMB), large-scale structure, high-redshift galaxies, and the abundances and properties of clusters. We find that the CMB is superior at finding non-Gaussianity in the primordial gravitational potential (as inflation would produce), while observations of high-redshift galaxies are much better suited to find non-Gaussianity that resembles that expected from topological defects. We derive a simple expression that relates the abundance of high-redshift objects in non-Gaussian models to the primordial skewness.  相似文献   

3.
We investigate the use of wavelet transforms in detecting and characterizing non-Gaussian structure in maps of the cosmic microwave background (CMB). We apply the method to simulated maps of the KaiserStebbins effect resulting from cosmic strings, on to which Gaussian signals of varying amplitudes are superposed. We find that the method significantly outperforms standard techniques based on measuring the moments of the pixel temperature distribution. We also compare the results with those obtained using techniques based on Minkowski functionals, and we again find the wavelet method to be superior. In particular, using the wavelet technique, we find that it is possible to detect non-Gaussianity even in the presence of a superposed Gaussian signal with 3 times the rms amplitude of the original cosmic string map. We also find that the wavelet technique is useful in characterizing the angular scales at which the non-Gaussian signal occurs.  相似文献   

4.
5.
We study the effect of primordial isocurvature perturbations on non-Gaussian properties of cosmic microwave background (CMB) temperature anisotropies. We consider generic forms of the non-linearity of isocurvature perturbations which can be applied to a wide range of theoretical models. We derive analytical expressions for the bispectrum and the Minkowski Functionals for CMB temperature fluctuations to describe the non-Gaussianity from isocurvature perturbations. We find that the isocurvature non-Gaussianity in the quadratic isocurvature model, where the isocurvature perturbation S is written as a quadratic function of the Gaussian variable  σ,  S =σ2−〈σ2〉  , can give the same signal-to-noise ratio as   f NL= 30  even if we impose the current observational limit on the fraction of isocurvature perturbations contained in the primordial power spectrum α. We give constraints on isocurvature non-Gaussianity from Minkowski Functionals using the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-year data. We do not find a significant signal of isocurvature non-Gaussianity. For the quadratic isocurvature model, we obtain a stringent upper limit on the isocurvature fraction  α < 0.070  (95 per cent CL) for a scale-invariant spectrum which is comparable to the limit obtained from the power spectrum.  相似文献   

6.
We adapt the smooth tests of goodness-of-fit developed by Rayner and Best to the study of the non-Gaussianity of interferometric observations of the cosmic microwave background (CMB). The interferometric measurements (visibilities) are transformed into signal-to-noise ratio eigenmodes, and then the method is applied directly in Fourier space. This transformation allows us to perform the analysis in different subsets of eigenmodes according to their signal-to-noise ratio level. The method can also deal with non-uniform or incomplete coverage of the UV plane. We explore here two possibilities: we analyse either the real and imaginary parts of the complex visibilities (Gaussianly distributed under the Gaussianity hypothesis) or their phases (uniformly distributed under the Gaussianity hypothesis). The power of the method in discriminating between Gaussian and non-Gaussian distributions is studied by using several kinds of non-Gaussian simulations. On the one hand, we introduce a certain degree of non-Gaussianity directly into the Fourier space using the Edgeworth expansion, and afterwards the desired correlation is introduced. On the other hand, we consider interferometric observations of a map with topological defects (cosmic strings). To these previous non-Gaussian simulations we add different noise levels and quantify the required signal-to-noise ratio necessary to achieve a detection of these non-Gaussian features. Finally, we have also studied the ability of the method to constrain the so-called non-linear coupling constant f NL using χ2 simulations. The whole method is illustrated here by application to simulated data from the Very Small Array interferometer.  相似文献   

7.
8.
We investigate the effects of non-Gaussianity in the primordial density field on the reionization history. We rely on a semi-analytic method to describe the processes acting on the intergalactic medium (IGM), relating the distribution of the ionizing sources to that of dark matter haloes. Extending previous work in the literature, we consider models in which the primordial non-Gaussianity is measured by the dimensionless non-linearity parameter f NL, using the constraints recently obtained from cosmic microwave background data. We predict the ionized fraction and the optical depth at different cosmological epochs assuming two different kinds of non-Gaussianity characterized by a scale-independent and a scale-dependent f NL and comparing the results to those for the standard Gaussian scenario. We find that a positive f NL enhances the formation of high-mass haloes at early epochs when reionization begins, and, as a consequence, the IGM ionized fraction can grow by a factor of up to 5 with respect to the corresponding Gaussian model. The increase of the filling factor has a small impact on the reionization optical depth and is of the order of ∼10 per cent if a scale-dependent non-Gaussianity is assumed. Our predictions for non-Gaussian models are in agreement with the latest Wilkinson Microwave Anisotropy Probe results within the error bars, but a higher precision is required to constrain the scale dependence of non-Gaussianity.  相似文献   

9.
《New Astronomy》2003,8(3):231-253
We discuss the four-point correlation function, or the trispectrum in Fourier space, of CMB temperature and polarization anisotropies due to the weak gravitational lensing effect by intervening large scale structure. We discuss the squared temperature power spectrum as a probe of this trispectrum and, more importantly, as an observational approach to extracting the power spectrum of the deflection angle associated with the weak gravitational lensing effect on the CMB. We extend previous discussions on the trispectrum and associated weak lensing reconstruction from CMB data by calculating non-Gaussian noise contributions, beyond the previously discussed dominant Gaussian noise. Non-Gaussian noise contributions are generated by lensing itself and by the correlation between the lensing effect and other foreground secondary anisotropies in the CMB such as the Sunyaev–Zel’dovich (SZ) effect. When the SZ effect is removed from temperature maps using its spectral dependence, we find these additional non-Gaussian noise contributions to be an order of magnitude lower than the dominant Gaussian noise. If the noise-bias due to the dominant Gaussian part of the temperature squared power spectrum is removed, then these additional non-Gaussian contributions provide the limiting noise level for the lensing reconstruction. The temperature squared power spectrum allows a high signal-to-noise extraction of the lensing deflections and a confusion-free separation of the curl (or B-mode) polarization due to inflationary gravitational waves from that due to lensed gradient (or E-mode) polarization. The small angular scale temperature and polarization anisotropy measurements provide a novel approach to weak lensing studies, complementing the approach based on galaxy ellipticities.  相似文献   

10.
We investigate the effect of foreground residuals in the WMAP ( Wilkinson Microwave Anisotropy Probe ) data by adding foreground contamination to Gaussian ensembles of cosmic microwave background (CMB) signal and noise maps. We evaluate a set of non-Gaussian estimators on the contaminated ensembles to determine with what accuracy any residual in the data can be constrained using higher-order statistics. We apply the estimators to the raw and cleaned Q -, V - and W -band first-year maps. The foreground subtraction method applied to clean the data in Bennett et al. appears to have induced a correlation between the power spectra and normalized bispectra of the maps which is absent in Gaussian simulations. It also appears to increase the correlation between the  Δℓ= 1  inter-ℓ bispectrum of the cleaned maps and the foreground templates. In a number of cases the significance of the effect is above the 98 per cent confidence level.  相似文献   

11.
We study the power of several scalar quantities constructed on the sphere (presented in Monteserín et al.) to detect non-Gaussianity in the temperature distribution of the cosmic microwave background (CMB). The test has been performed using non-Gaussian CMB simulations with injected skewness or kurtosis generated through the Edgeworth expansion. We have also taken into account in the analysis the effect of anisotropic noise and the presence of a Galactic mask. We find that the best scalars to detect an excess of skewness in the simulations are the derivative of the gradient, the fractional isotropy, the Laplacian and the shape index. For the kurtosis case, the fractional anisotropy, the Laplacian and the determinant are the quantities that perform better.  相似文献   

12.
We investigate the power of wavelets in detecting non-Gaussianity in the cosmic microwave background (CMB). We use a wavelet-based method on small simulated patches of the sky to discriminate between a pure inflationary model and inflationary models that also contain a contribution from cosmic strings. We show the importance of the choice of a good test statistic in order to optimize the discriminating power of the wavelet technique. In particular, we construct the Fisher discriminant function, which combines all the information available in the different wavelet scales. We also compare the performance of different decomposition schemes and wavelet bases. For our case, we find that the Mallat and a ` trous algorithms are superior to the 2D-tensor wavelets. Using this technique, the inflationary and strings models are clearly distinguished even in the presence of a superposed Gaussian component with twice the rms amplitude of the original cosmic string map.  相似文献   

13.
A method to compute several scalar quantities of cosmic microwave background (CMB) maps on the sphere is presented. We consider here four type of scalars: the Hessian matrix scalars, the distortion scalars, the gradient-related scalars and the curvature scalars. Such quantities are obtained directly from the spherical harmonic coefficients   a ℓ m   of the map. We also study the probability density function of these quantities for the case of a homogeneous and isotropic Gaussian field, which are functions of the power spectrum of the initial field. From these scalars it is possible to construct a new set of scalars which are independent of the power spectrum of the field. We test our results using simulations and find good agreement between the theoretical probability density functions and those obtained from simulations. Therefore, these quantities are proposed to investigate the presence of non-Gaussian features in CMB maps. Finally, we show how to compute the scalars in the presence of anisotropic noise and realistic masks.  相似文献   

14.
Cosmic microwave background and large-scale structure data will shortly improve dramatically with the Microwave Anisotropy Probe and Planck Surveyor , and the Anglo-Australian 2-Degree Field and Sloan Digital Sky Survey. It is therefore timely to ask which of the microwave background and large-scale structure will provide a better probe of primordial non-Gaussianity. In this paper we consider this question, using the bispectrum as a discriminating statistic. We consider several non-Gaussian models and find that in each case the microwave background will provide a better probe of primordial non-Gaussianity. Our results suggest that if microwave background maps appear Gaussian, then apparent deviations from Gaussian initial conditions in galaxy surveys can be attributed with confidence to the effects of biasing. We demonstrate this precisely for the spatial bispectrum induced by local non-linear biasing.  相似文献   

15.
We describe different methods for estimating the bispectrum of cosmic microwave background data. In particular, we construct a minimum-variance estimator for the flat-sky limit and compare results with previously studied frequentist methods. Application to the MAXIMA data set shows consistency with primordial Gaussianity. Weak quadratic non-Gaussianity is characterized by a tunable parameter   f NL  , corresponding to non-Gaussianity at a level of  ∼10−5 f NL  (the ratio of non-Gaussian to Gaussian terms), and we find limits of   f NL= 1500 ± 950  for the minimum-variance estimator and   f NL= 2700 ± 1650  for the usual frequentist estimator. These are the tightest limits on primordial non-Gaussianity, which include the full effects of the radiation transfer function.  相似文献   

16.
We use numerical simulations of a (480 Mpc  h −1)3 volume to show that the distribution of peak heights in maps of the temperature fluctuations from the kinematic and thermal Sunyaev–Zeldovich (SZ) effects will be highly non-Gaussian, and very different from the peak-height distribution of a Gaussian random field. We then show that it is a good approximation to assume that each peak in either SZ effect is associated with one and only one dark matter halo. This allows us to use our knowledge of the properties of haloes to estimate the peak-height distributions. At fixed optical depth, the distribution of peak heights resulting from the kinematic effect is Gaussian, with a width that is approximately proportional to the optical depth; the non-Gaussianity comes from summing over a range of optical depths. The optical depth is an increasing function of halo mass and the distribution of halo speeds is Gaussian, with a dispersion that is approximately independent of halo mass. This means that observations of the kinematic effect can be used to put constraints on how the abundance of massive clusters evolves, and on the evolution of cluster velocities. The non-Gaussianity of the thermal effect, on the other hand, comes primarily from the fact that, on average, the effect is larger in more massive haloes, and the distribution of halo masses is highly non-Gaussian. We also show that because haloes of the same mass may have a range of density and velocity dispersion profiles, the relation between halo mass and the amplitude of the thermal effect is not deterministic, but has some scatter.  相似文献   

17.
We study the limits of accuracy for weak lensing maps of dark matter using diffuse 21-cm radiation from the pre-reionization epoch using simulations. We improve on previous 'optimal' quadratic lensing estimators by using shear and convergence instead of deflection angles. This is a generalization of the deflection estimator, and is more optimal for non-Gaussian sources. The cross-power spectrum of shear and convergence is an unbiased estimator of lensing power spectrum which does not require knowledge of the source four-point function. We find that non-Gaussianity provides a limit to the accuracy of weak lensing reconstruction, even if instrumental noise is reduced to zero. The best reconstruction result is equivalent to Gaussian sources with effective independent cell of side length  2.0  h −1 Mpc  . Using a source full map from z = 10 to 20, this limiting sensitivity allows mapping of dark matter at a signal-to-noise ratio greater than 1 out to l ≲ 6000, which is better than any other proposed technique for large-area weak lensing mapping.  相似文献   

18.
Recent tentative findings of non-Gaussian structure in the COBE -DMR data set have triggered renewed attention on candidate models from which such intrinsic signature could arise. In the framework of slow-roll inflation with built-in non-linearities in the inflaton field evolution, we present expressions for both the cosmic microwave background (CMB) skewness and the full angular bispectrum 123 in terms of the slow-roll parameters. We use an estimator for the angular bispectrum recently proposed in the literature and calculate its variance for an arbitrary ℓ i multipole combination. We stress that a real detection of non-Gaussianity in the CMB would imply that an important component of the anisotropies arises from processes other than primordial quantum fluctuations. We further investigate the behaviour of the signal-to-(theoretical) noise ratio and demonstrate for generic inflationary models that it decreases in the limited range of small ℓs considered for increasing multipole ℓ, while the opposite applies for the standard s.  相似文献   

19.
We present a method, based on the correlation function of excursion sets above a given threshold, to test the Gaussianity of the cosmic microwave background (CMB) temperature fluctuations in the sky. In particular, this method can be applied to discriminate between standard inflationary scenarios and those producing non-Gaussianity such as topological defects. We have obtained the normalized correlation of excursion sets, including different levels of noise, for two-point probability density functions constructed from the Gaussian, χ2 n and Laplace one-point probability density functions in two different ways. Considering subdegree angular scales, we find that this method can distinguish between different distributions even if the corresponding marginal probability density functions and/or the radiation power spectra are the same.  相似文献   

20.
We present a Gaussianity analysis of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-yr cosmic microwave background (CMB) temperature anisotropy data maps. We use several third-order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter f nl using well-motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q , V , and W frequency bands. We use the KQ 75 mask recommended by the WMAP team which masks out 28 per cent of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients, we compute the third order estimators which are used to perform a  χ2  analysis. The  χ2  statistic is used to test the Gaussianity of the WMAP data as well as to constrain the f nl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the f nl parameter is constrained to  −8 < f nl < +111  at 95 per cent confidence level (CL) for the combined   V + W   map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of  Δ f nl= 3 ± 5  in the   V + W   map. Our results are very similar to those obtained by the WMAP team using the bispectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号