首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Observational evidence such as outflow channels and valley networks suggest that in the past there was flowing water on Mars. The images of fluvial features on Mars logically suggest that there must exist downstream locations in which the water pooled and the sediment load deposited (i.e. lakes). Sediments and morphological features associated with the martian paleolakes are believed to occur in Valles Marineris, and several large basins including Amazonis, Chryse and Elysium planitia. As Mars became progressively colder over geological time, any lakes on its surface would have become seasonally, and eventually perennially ice-covered. We know from polar lakes on Earth that ice-covered lakes can persist even when the mean annual temperature falls below freezing. Thus, the most recent lacustrine sediments on Mars were probably deposited in ice-covered lakes. While life outside of the Earth's atmosphere has yet to be observed, there is a general consensus among exobiologists that the search for extraterrestrial life should be based upon liquid water. The inference that there was liquid water on Mars during an earlier epoch is the primary motivation for considering the possibility of life during this time. It would be of enormous interest from both an exobiological and paleolimnological perspective to discover lakes or the evidence of former lakes on another planet such as Mars. Limnology would then become an interplanetary science.  相似文献   

2.
Fluvial systems can be preserved in inverted relief on both Earth and Mars. Few studies have evaluated the applicability of various paleohydrological models to inverted fluvial systems. The first phase of this investigation focused on an extensive (spanning  12 km) inverted paleochannel system that consists of four sandstone-capped, carbonate-cemented, sinuous ridges within the Early Cretaceous Cedar Mountain Formation located southwest of Green River, Utah. Morphologic and sedimentologic observations of the exhumed paleochannels were used to evaluate multiple numerical models for reconstructing paleofluvial hydrological parameters. Another objective of the study was to determine whether aerial or orbital observations yield model results that are consistent with those constrained by field data. The models yield an envelope of plausible dominant discharge values (100–500 m3/s), reflecting the limitations of the approach, and no single model can be used to reliably estimate paleodischarge. On Mars, landforms with attributes consistent with inverted channels have been identified. In spite of differences in the formation history between these martian landforms and the terrestrial analog described here, including potential differences in cement composition and the erosional agent that was responsible for relief inversion, these numerical models can be applied (with modification) to the martian landforms and yield an envelope of plausible values for dominant discharge.  相似文献   

3.
火星风沙地貌研究进展   总被引:3,自引:2,他引:1  
李继彦  董治宝 《中国沙漠》2016,36(4):951-961
作为最活跃的地貌塑造外营力,风力作用在火星表面塑造了各种各样的地貌形态。对火星风沙活动及风沙地貌的认识是随着观测和探测技术的进步而逐渐明确的。火星沙丘在北极地区连绵成带状分布,在其他地区分布比较零散,且主要与撞击坑、河谷和山谷相伴分布。火星风沙地貌与地球上相应的地貌类型形态相似而规模更大,表明两个星球上塑造风沙地貌的动力系统具有一定的相似性。火星沙丘主要由玄武岩质(北极部分沙丘为石膏质)颗粒堆积而成,沉积物粒度比地球粗,主要是由中沙和粗纱组成。随着获取影像时空分辨率的提高和着陆器在火星近表面的观测,发现火星上部分区域的沙丘和沙波纹比较活跃。同地球一样,火星风沙地貌也可指示火星气候的变化。  相似文献   

4.
Lithology and physical properties of strata exposed at the Earth's surface have direct influence on the erosion and geomorphic expression of landforms. While this is well known on our planet, examples on Mars are just coming to light among the tens of thousands of airphoto-quality images (resolutions 1.5–12 m/pixel) acquired since 1997 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). Specific examples occur among martian north polar layered materials, which MOC images reveal are divided into two distinct stratigraphic units: a lower, dark-toned layered unit and a younger, upper, lighter-toned layered unit. The lower unit is less resistant to wind erosion than the upper unit. The upper unit most likely consists of stratified dust and ice, while the lower unit contains abundant, poorly cemented sand. Sand is more easily mobilized by wind than dust; the lower resistance to erosion of the lower unit results from the presence of sand. Where wind erosion in polar troughs has penetrated to the lower unit, geomorphic change has proceeded more rapidly: sand has been liberated from the lower unit, and arcuate scarps have formed as the upper unit has been undermined. Wind erosion of the lower unit thus influences the geomorphology of the north polar region; this result likely explains the genesis of the large polar trough, Chasma Boreale, and the relations between dunes and arcuate scarps that have puzzled investigators for nearly three decades. The properties of the stratigraphic units suggest that the upper limit for the amount of water contained in the north polar layered materials may be 30–50% less than previously estimated.  相似文献   

5.
Summary Many accept thermal convection within the mantle of the Earth as the driving mechanism for continental drift. It is also of considerable interest to determine whether thermal convection is occurring within Venus, Mars, and the Moon. In this paper a systematic treatment of the stability of planetary interiors is given. The thermal stability problem for a layer of fluid heated from below is solved when the viscosity of the fluid increases exponentially with depth. For a semi-infinite fluid with exponentially increasing viscosity the critical Rayleigh number based on the surface viscosity and the scale length of the viscosity increase is found to be 30 for a fixed surface boundary condition and 23 for a free surface boundary condition. This stability analysis is also extended to include volume heat release. The thermal stability of the interiors of the Earth, Venus, Mars and the Moon is examined. Using temperature-depth profiles in the literature and a theoretical expression for the viscosity of a crystalline solid based on diffusion creep, viscosity depth profiles for planetary interiors are obtained. Because of the strong pressure effect the viscosity within the Earth and Venus increases greatly from a near surface minimum. For Mars the increase is less pronounced and within the interior of the Moon the viscosity is nearly constant. For all the cases considered the planetary interiors are found to be thermally unstable. Because of the dependence of viscosity on depth the interiors of the Moon and Mars are found to be considerably less stable than Venus and the Earth. It is concluded that thermal convection is occurring within the planetary bodies considered.  相似文献   

6.
The geomorphology of planetary calderas   总被引:1,自引:0,他引:1  
Satellite-derived observations of the geomorphology of calderas on Earth, Mars and Venus can be used to learn more about shield volcanoes. Examples of terrestrial basaltic volcanoes from the Galapagos Islands, Hawaii, and the Comoro Islands show how these volcanoes contrast with examples found on Mars and Venus. Caldera structure, degree of infilling, and the location of vents on the flanks are used to interpret each volcano's recent history. The geometry of the caldera floor can be used to infer some of the characteristics of the magma storage system, and the orientation of the deep magma conduits. The formation of benches within the caldera and the effects of the caldera on the distribution of flank eruptions are considered, and it is evident that most calderas on the planets are/were dynamic features. Presently, deep calderas, with evidence of overflowing lavas and ponded lavas high in the caldera wall, show that these calderas were once shallow. Similarly, shallow calderas filled with ponded lavas are evidence that they were once deeper. It is probably a mistake, therefore, to place great significance on caldera depth with regard to the position, shape, or size of subsurface plumbing.  相似文献   

7.
8.
Summary. A thermal history model for the Earth is described in which the energetically important effects of convection are parameterized through the Nusselt number. The validity of the resulting quasi-steady-state thermal model is shown to depend upon the separation of two time-scales—a dynamic time-scale associated with the overturn time for an assumed mantle-wide convective circulation, and a thermal time-scale associated with the cooling of the planet. Provided the initial thermal state of the Earth was 'hot', the assumption of a time-scale separation can be shown under certain conditions, to be valid throughout the Earth's history. In this connection, the temperature-dependent mantle rheology plays a key role in regulating the thermal history. It is shown that the present-day, gross thermal structure of the Earth can be understood within the context of a quasi-steady-state model which is driven mainly by primordial heat. The notion of whole-mantle convection is shown to be consistent with several additional observational constraints, including the observed mean lithospheric thickness and the mean plate velocities. We briefly consider the extension of the parameterized thermal model to Venus.  相似文献   

9.
In addition to socio-economic factors, major landforms may affect the city structure and urban form. Here we show that landforms have significant effects on the city shape and street patterns of the fast-growing Iranian cities of Dezful (a river) and Khorramabad (moun- tains and valleys), but no clear effects on the cities of Yazd and Nain. Also, where the street orientation is peaked, the Gibbs/Shannon entropy (a measure of dispersion or spread) is low, but increases as the distribution becomes more uniform because of landform constraints. The streets in the old inner parts of all the cities are, on average, shorter and denser (more streets per unit area) than the streets of the newer outer parts. The entropies of the outer parts are also greater than those of the inner parts, implying that the street-length distribution gradually becomes more dispersed or spread as the city expands. All these cities have been fast growing in the past decades, with the newer outer parts expanding rapidly. As shown here, the rapidly formed outer parts (with greater dispersion in street patterns) have significantly different textures from those of the older inner parts, indicating different functionality and growth processes. These quantitative methods for street-network analysis can be used worldwide, particularly for analysing the effects of landforms on city shape and texture.  相似文献   

10.
In addition to socio-economic factors,major landforms may affect the city structure and urban form. Here we show that landforms have significant effects on the city shape and street patterns of the fast-growing Iranian cities of Dezful (a river) and Khorramabad (mountains and valleys),but no clear effects on the cities of Yazd and Nain. Also,where the street orientation is peaked,the Gibbs/Shannon entropy (a measure of dispersion or spread) is low,but increases as the distribution becomes more uniform because of landform constraints. The streets in the old inner parts of all the cities are,on average,shorter and denser (more streets per unit area) than the streets of the newer outer parts. The entropies of the outer parts are also greater than those of the inner parts,implying that the street-length distribution gradually becomes more dispersed or spread as the city expands. All these cities have been fast growing in the past decades,with the newer outer parts expanding rapidly. As shown here,the rapidly formed outer parts (with greater dispersion in street patterns) have significantly different textures from those of the older inner parts,indicating different functionality and growth processes. These quantitative methods for street-network analysis can be used worldwide,particularly for analysing the effects of landforms on city shape and texture.  相似文献   

11.
In addition to socio-economic factors, major landforms may affect the city structure and urban form. Here we show that landforms have significant effects on the city shape and street patterns of the fast-growing Iranian cities of Dezful(a river) and Khorramabad(mountains and valleys), but no clear effects on the cities of Yazd and Nain. Also, where the street orientation is peaked, the Gibbs/Shannon entropy(a measure of dispersion or spread) is low, but increases as the distribution becomes more uniform because of landform constraints. The streets in the old inner parts of all the cities are, on average, shorter and denser(more streets per unit area) than the streets of the newer outer parts. The entropies of the outer parts are also greater than those of the inner parts, implying that the street-length distribution gradually becomes more dispersed or spread as the city expands. All these cities have been fast growing in the past decades, with the newer outer parts expanding rapidly. As shown here, the rapidly formed outer parts(with greater dispersion in street patterns) have significantly different textures from those of the older inner parts, indicating different functionality and growth processes. These quantitative methods for street-network analysis can be used worldwide, particularly for analysing the effects of landforms on city shape and texture.  相似文献   

12.
The geomorphology of the martian valley networks is examined from a hydrological perspective for the compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface materials as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent groundwater outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric source of water for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.  相似文献   

13.
南极GRV 99027陨石:火星陨石中的一个新成员   总被引:6,自引:4,他引:6       下载免费PDF全文
来自南极格罗夫山蓝冰地区的GRV 99027陨石为一无球粒陨石,主要由橄榄石及辉石组成。棕色橄榄石具堆晶结构及镶嵌结构等火成岩浆分异结晶的特征。陨石的矿物模式组成及化学成分显示与SNC族陨石特征相似,特别是与ALHA77005陨石十分接近。后者被确定为二辉橄榄岩质辉玻无球粒陨石类(Lherozolitic-Shergotty,L-S)火星陨石。GRV 99027陨石的矿物化学特征以及FeO/MnO比值也与L-S类相似。可以初步认为GRV 99027陨石为SNC族火星陨石一个新的成员。二辉橄榄岩相当于地球的上地幔成分。陨石来自火星探部,为世界上极为稀有的火星样品,极具研究价值。  相似文献   

14.
火星陨石的发现使人类第一次获得了除地球之外,太阳系另一类地行星的岩石样品。目前已收集并确证的火星陨石共10个,包括了4种岩石类型,其中有4个火星陨石是在南极地区发现和回收的。本文通过对火星陨石有关岩石学、矿物学、全岩化学组成、轻元素及稀有气体的同位素组成,以及同位素年代学特征的总结和对比,对火星幔的化学组成特征、岩浆作用及火星表面的化学风化作用等进行了初步的讨论。  相似文献   

15.
The Passive Influence of the Oceans upon the Rotation of the Earth   总被引:2,自引:0,他引:2  
A general theory is developed which allows the exact numerical computation of the static equilibrium response of a non-rotating spherically symmetric Earth model covered by thin oceans with geometrically irregular coastlines to the action of an imposed static tidal or centrifugal potential. The theory is self-consistent, and takes into account the gravitational self-attraction of the oceans and the elastic-gravitational response of the Earth model to both the applied potential and the equilibrium oceanic tidal load on the surface. The results are used to determine the influence of an equilibrium pole tide on the free period and the associated rotational eigenfunction of the Chandler wobble. If the pole is globally well represented by this equilibrium approximation, its effect is to increase the Chandler wobble period by 27·6 days. It is shown that a fully self-consistent theory of the rotation of an Earth model with oceans predicts that changes in spin and wobble will be coupled, and that the Chandler wobble should, as a result, be accompanied by an associated periodic change in the length of day. The consequences of spin-wobble coupling are explored quantitatively, and found to be slight.  相似文献   

16.
Terrestrial ventifacts – rocks that have been abraded by windblown particles – are found in desert, periglacial, and coastal environments. On Mars, their abundance suggests that aeolian abrasion is one of the most significant erosional processes on the planet. There are several conflicting viewpoints concerning the efficacy of potential abrasive agents, principally sand and dust, and the relationships between wind direction and ventifact form. Our research, supported by a review of the literature, shows that sand, rather than dust or other materials, is the principle abrasive agent on Earth and Mars. Relative to dust, sand delivers about 1000× the energy onto rock surfaces on a per particle basis. Even multiple dust collisions will do little or no damage because the stress field from the impact is much smaller than the spacing of microflaws in the rock. The abrasion profiles of terrestrial ventifacts are consistent with a kinetic energy flux due to saltating sand, not airborne dust. Furthermore, Scanning Electron Microscope images reveal surfaces that are fractured and cleaved by sand grain impact. With respect to their distribution, ventifacts are found in regions that contain sand or did so in the past, but are not found where only dust activity occurs. Contrary to some published reports, our evidence from field studies, analytical models, and wind tunnel and other experiments indicates that windward, not leeward, abrasion is responsible for facet development and feature formation (pits, flutes, and grooves). Leeward abrasion is confined to fluvial conditions, in which the high viscosity and density of water are able to entrain sand-size material in vortices. Therefore, ventifacts and abraded terrain provide an unambiguous proxy for the direction of the highest velocity winds, and can be used to reconstruct palaeowind flow.  相似文献   

17.
We conducted a preliminary study of paleoshoreline features associated with Böön Tsagaan Nuur, Tsagaan Nuur, and Orog Nuur, lakes located in the Gobi–Altai transition zone of the Valley of Lakes (Dolina Ozor) which stretches from central to western Mongolia. The paleoshoreline features were first identified on RADARSAT satellite SAR imagery. We investigated the features during the 1998 field season of the Joint Mongolian–Russian–American Archaeological Expedition to the Gobi–Altai region. We identified paleoshorelines of multiple elevations in the field, which are considered to be relict beach ridges and wave-cut terraces. Other paleolake landforms include spits and Gilbert-type deltas. These landforms are complex, large and well established, implying that the paleolakes were stable for extended periods. The reconstructed paleolakes cover extensive areas of the valley floor, implying that hydrological and climatic conditions were very different in the past. Paleolake expansions may have occurred under a variety of circumstances. One hypothesis is that the high lake stands occurred during the wetter period corresponding to the Oxygen Isotope Stage 3 prior to the Last Glacial Maximum (LGM), during the warmest early Holocene and the late Holocene, or during all these periods. If low evaporation rates due to lower temperatures, glacier meltwater and possibly increased precipitation are important factors, then the expansions may have occurred during the terminal Late Glacial period after the Last Glacial Maximum. The greatly expanded lakes in the Gobi–Altai could have significantly affected the Quaternary human demography and migration in the region.  相似文献   

18.
This paper presents an overview of some of the most significant, recent to ancient, littoral morpho-sedimentary structures and deposits from the Lake Turkana Basin. We highlight the importance of wave-related sedimentary processes in lakes, and more specifically in rift lakes. In the published literature, references to wave-dominated shorelines are mainly in regards to coastal marine environments. However, numerous modern lakes exhibit typical wave-dominated littoral landforms, and related sedimentary deposits are known from several paleolake successions in the geological record. Wave-related processes are often of relatively minor importance in depositional models for lacustrine environments. Classical models emphasize clastics transported by rivers, which are then distributed by fan-deltas and/or deltas into a water body of fluctuating depth, where reworking of clastics is limited in the littoral domain, and episodic in deep waters. Modern processes in Lake Turkana and the exposed paleolake deposits of the Turkana Basin demonstrate that this view is incomplete. Wave-dominated shorelines are evident (1) for modern Lake Turkana based on prominent and active littoral landforms (e.g., beach ridges, sand spits, washover fans, and arcuate-cuspate deltas); (2) for the Holocene (African Humid Period) climate-driven highstand of Megalake Turkana and its subsequent forced regression based on conspicuous raised beach ridges and spits; and (3) for the Pliocene–Pleistocene (Omo Group, Nachukui Formation) from typical nearshore sedimentary facies and stratigraphic architectures associated with paleolake Turkana. These examples from the Turkana Basin coupled with examples from other lacustrine settings, suggest that wave-dominated clastic shorelines represent significant portions of existing and ancient lake-shores. As this view contrasts with classic depositional models for lakes, notably for those found in rift setting, we also present examples of wave-influenced littoral landforms from other lakes of the East African Rift System. Identifying lacustrine paleoshorelines from typical clastic landforms and deposits is the key to the spatial reconstruction of lakes over time, and to determine transgressive–regressive cycles. Waves action is an important agent in lakes for the erosion, transport, and deposition of clastics at the basin-scale, an aspect that needs to be integrated in sedimentary models.  相似文献   

19.
基于DEM的地球与火星格状沙丘对比分析   总被引:1,自引:1,他引:0  
沙丘是柴达木盆地可类比火星的重要地貌类型,沙丘形态是类火星风沙地貌研究的重要内容。基于数字地形分析(DTA)的方法,采用高程、坡度、坡向及地表复杂程度4个地形计量学指标对火星(北极地区)和地球(柴达木盆地)格状沙丘的地貌形态特征进行定量对比分析。结果表明:(1)两个研究区的高程剖面、坡度、坡向的地理学空间分布格局具有较大相似性;(2)高程、高程梯度、坡度和坡向的直方图相似度指数均大于0.7;(3)不同尺度上的分形维数近似相等,即地表复杂程度相似。用数字地形分析与直方图相似度指数结合的方法,定量或半定量地分析两个研究区沙丘地貌形态的相似性,这对类火星风沙地貌研究中科学选择试验点是一种新的尝试,以期为反演火星风沙地貌的形成与演化提供科学依据。  相似文献   

20.
A comparison of methods used to estimate the height of sand dunes on Mars   总被引:1,自引:2,他引:1  
The collection of morphometric data on small-scale landforms from other planetary bodies is difficult. We assess four methods that can be used to estimate the height of aeolian dunes on Mars. These are (1) stereography, (2) slip face length, (3) profiling photoclinometry, and (4) Mars Orbiter Laser Altimeter (MOLA). Results show that there is good agreement among the methods when conditions are ideal. However, limitations inherent to each method inhibited their accurate application to all sites. Collectively, these techniques provide data on a range of morphometric parameters, some of which were not previously available for dunes on Mars. They include dune height, width, length, surface area, volume, and longitudinal and transverse profiles. The utilization of these methods will facilitate a more accurate analysis of aeolian dunes on Mars and enable comparison with dunes on other planetary surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号