首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

2.
Series of continental and oceanic alkaline associations have been compared. Comparison confirms that alkaline plumes originated from the Earth’s liquid core under the continents and, less often, under the oceans. The spatial distribution of alkaline complexes has been analyzed in terms of the plume magmatism theory. Analysis suggests that the zoning and lateral migration of alkaline magmatic centers in alkaline provinces were determined by the migration of an alkaline plume (multiplume) and its alkaline basaltic, alkaline ultramafic, carbonatitic, kimberlitic, and other derivates.Two components are well pronounced in the chemical history of alkaline plume magmatism. The first is the foidaphile component, which persists in all igneous and metasomatic rocks of various alkaline complexes. It includes elements associated with Na and K: rare alkali metals, alkaline earth metals, radioactive elements, rare earths, and others. They make up the important part of the plume that might have separated from the liquid core. The second component is rock-forming mantle–lithospheric, which formed in the asthenosphere during the mixing of mantle and lithospheric sources while the plume ascended to the Earth’s surface.  相似文献   

3.
通过中国及邻近陆海地区天然地震面波层析成像三维Vs速度结构的系统地质构造解析,笔者论述了中国及邻近陆海地区软流圈三维结构特征,发现该区软流圈内既有高速块体,又有低速异常体,显示软流圈内存在纵向与横向上的不均匀性,研究软流圈内低速异常体三维几何结构表明,南海低速异常体呈复蘑菇状,结合地幔体波层析成像研究显示,南海地区存在巨型复蘑菇状地幔低速柱头。笔者还探讨了软流圈对岩石圈结构的影响及其相互作用问题。  相似文献   

4.
The recent recognition that long period (i.e., of the order of hours) electromagnetic induction studies could play a major role in the detection of the asthenosphere has led to much interest amongst the geophysical and geological communities of the geomagnetic response functions derived for differing tectonic environments. Experiments carried out on the ocean bottom have met with considerable success in delineating the “electrical asthenosphere”, i.e., a local maximum in electrical conductivity (minimum in electrical resistivity) in the upper mantle.In this paper, observations of the time-varying magnetic field recorded in three regions of Scandinavia, northern Sweden (Kiruna—KIR), northern Finland/northeastern Norway (Kevo—KEV) and southern Finland (Sauvamaki—SAU), are analysed in order to obtain estimates of the inductive response function, C(ω), for each region. The estimated response functions are compared with one from the centre of the East European Platform (EEP), and it is shown that the induced eddy currents, at periods of the order of 103–104 s, in the three regions flow much closer to the surface than under the platform centre. Specifically, at a period of ~3000 s, these currents are flowing at depths of the order of: KEV—120 km; KIR—180 km; SAU—210 km; EEP—280 km; implying that the transition to a conducting zone, of σ -0.2 S/m, occurs at around these depths. One-dimensional inversion of and shows that there must exist a good conducting zone, of σ = 0.1–1.0 S/m, under each of the two regions, of 40 km minimum thickness, at depths of: KEV 105–115 km; KIR 160–185 km. This is to be contrasted with EEP, where the ρ-d profile displays a monotonically decreasing resistivity with depth, reaching σ~0.1 S/m at > 300 km.Finally, a possible temperature range for the asthenosphere, consistent with the deduced conducvitity, is discussed. It is shown that, at present, there is insufficient knowledge of the conditions (water content, melt fraction, etc.) likely to prevail in the asthenosphere to narrow down the probable range of 900°–1500°C.  相似文献   

5.
笔者根据地震面波层析成像结果,对欧亚大陆及西太平洋岩石圈和软流圈速度结构进行了研究,发现东亚至西太平洋间存在一巨型低速异常带,结合构造地质学、地幔岩石学、地球化学及其他地球物理特性的研究,确认该区存在巨型裂谷体系。该巨型裂谷体系的岩石圈和软流圈三维Vs速度结构与太平洋洋中脊、大西洋洋中脊和印度洋洋中脊及其邻区的岩石圈和软流圈地震Vs速度结构十分相似,而与东太平洋边缘现代板块俯冲带的岩石圈与软流圈Vs速度结构有显著差异。在进一步论述该区动力学特征后认为,该巨型裂谷体系是中生代中晚期以来岩石圈整体主动伸展变形,大型裂陷盆地形成,岩石圈强烈拆沉减薄,以及软流圈物质上涌加热引起的。边缘海是在大陆裂谷系形成基础上发展起来的,主导扩张期为中渐新世至中中新世(32-13Ma),这些边缘海在17-15Ma后停止扩张,因而未能将所有边缘海和洋中脊联通。据此划分出4期构造变形动力学演化阶段,现今东亚至西太平洋间大陆裂谷、边缘海与沟弧体系是新生代中晚期以来,邻区各板块构造相互作用叠加的结果。  相似文献   

6.
Based on the Crust2.0 model and the topography data of Chinese continent and its adjacent regions, a three-dimensional finite element model is constructed in terms of the spherical coordinate system. In our numerical model, the average annual ground temperature from 195 meteorological stations and temperature of upper mantle derived from the seismic velocities are adopted as the top and bottom boundary conditions, respectively. The observed thermal conductivity and heat production from P wave velocity based on empirical formula are employed in our numerical model as well. The comparison between the calculated and observed surface heat flow proved that our results are reliable. The temperature beneath the Precambrian cratons is lower than that of other areas for 100–300 °C also. The typical temperature rang at the Moho is estimated to be 800–1000 °C beneath the Tibetan plateau and 500–700 °C beneath the Precambrian cratons (such as Indian plate, Sichuan basin, South China, North China and Tarim), respectively. The thermal state in the eastern part of Sino-Korean craton at the depth deeper than 60 km indicates that it was destructed. The thermal structure in center of Tibetan plateau (especially beneath Qiangtang area) supports the proposed flow of lower crustal or upper mantle material to the east. Generally, the distribution of volcanoes in Chinese continent is consistent with the high temperature areas in the crust or upper mantle. There are many obvious thermal transition zones across the orogenic belts. The thermal transition zone between eastern and western parts in the crust of Chinese continent is consistent with the north–south seismic zone.  相似文献   

7.
H.J. Melosh 《Tectonophysics》1976,35(4):363-390
This paper investigates the effect of shear heating in the asthenosphere on the thermal structure of the upper mantle. Equations describing the motion of the lithosphere over the asthenosphere in the presence of a strongly temperature-dependent stress-strain rate relation are derived and solved with the help of several approximations. These approximations are shown to be valid under conditions appropriate for the earth.Two sets of solutions are found. For one set (the “subcritical” solutions) a normal shear stress—velocity relation is found for small stresses. The velocity increases as the stress increases, reaching a maximum velocity σc for a critical stress σc. The subcritical solutions have a negligible effect on the thermal structure of the earth, even at the critical stress. The other set of solutions (the “supercritical” solutions) has the bizarre property that a decrease of applied shear stress leads to an increase of velocity. Thus, as the shear stress goes to zero, the velocity becomes infinite. At larger shear stresses the velocity decreases until it reaches σc at a stress σc (the two sets of solutions share this point in common). There are no steady solutions of any kind for shear stresses in excess of σc. We discard the supercritical solutions as candidates for the thermal structure of the earth on the basis of their instability to small perturbations of applied stress and temperature.The realm of subcritical solutions (stress less than σc, velocity less than σc) thus defines a regime of plate motion in which the thermal effects of shear heating are negligible. If the shear stresses acting on plates exceed σc, however, new physical processes must come into play to dissipate the excess heat generated. Assuming that the velocities of plates on the earth today are less than σc, relative to the deep mantle, a strict upper limit of a few tens of bars can be derived for σc, corresponding to effective viscosities of ca. 1019 poise in the asthenosphere.  相似文献   

8.
杨文采 《地质论评》2019,65(5):1039-1053
大陆动力学研究地球内能量和物质的运动和伴随的信息传播,上地幔中的软流圈是地球内部的物质运动的关键部位之一。由于观测的技术方法少,人类对软流圈内部的地质作用过程所知甚少。在青藏高原,过去地震波三维层析成像的分辨率不高,难以对地壳上地幔构造进行准确的定位。我们收集和整理了地方地震台的数字化观测数据,使地震体波三维层析成像的准确度大大提高,为解决软流圈的地质构造准确成像提供了新的可能性。根据地震体波三维层析的成像结果,在古特提斯洋和特提斯洋俯冲板块前沿的软流圈底部410 km间断面上方,存在反映古大洋俯冲板块的高速体,它们在青藏高原、苏鲁和伊朗都有出现。清晰和稳定的高波速异常的位置表明,特提斯洋俯冲板块现在已经拆沉在软流圈的底部,古特提斯洋俯冲板块也可能曾经拆沉在软流圈的底部。对比青藏高原和苏鲁的地壳上地幔波速结构推测,拆沉造成软流圈中的轻元素物质上涌,进入大陆岩石圈,造成岩浆活动。上涌还使碰撞造山带地壳厚度减小,而岩石圈厚度增加。大约100 Ma后,俯冲下去的大洋残块会被软流圈物质磨蚀交代,使岩石圈厚度增加, 形成大陆下方的大陆根,造成大陆克拉通化和体积增生。大洋板块俯冲后在软流圈拆沉是岩石圈—软流圈物质循环的一种重要方式,对软流圈中物质均衡和体积稳定也起重要作用。  相似文献   

9.
The interpretation of the seismic Vibroseis and explosive TRANSALP profiles has examined the upper crustal structures according to the near-surface geological evidences and reconstructions which were extrapolated to depth. Only the southern sector of the TRANSALP transect has been discussed in details, but its relationship with the whole explored chain has been considered as well. The seismic images indicate that pre-collision and deep collision structures of the Alps are not easily recognizable. Conversely, good records of the Neo-Alpine to present architecture were provided by the seismic sections.Two general interpretation models (“Crocodile” and “Extrusion”) have been sketched by the TRANSALP Working Group [2002]. Both illustrate the continental collision producing strong mechanical interaction of the facing European and African margins, as documented by giant lithosphere wedging processes. Arguments consistent with the “Extrusion” model and with the indentation of Adriatic (Southalpine) lithosphere underneath the Tauern Window (TW) are:
– According to the previous DSS reconstructions, the Bouguer anomalies and the Receiver Functions seismological data, the European Moho descends regularly attaining a zone south of the Periadriatic Lineament (PL). The Moho boundary and its geometry appear to be rather convincing from images of the seismic profile;
– the Tauern Window intense uplift and exhumation is coherent with the strong compression regime, which acted at depth, thus originating the upward and lateral displacement of the mobile and ductile Penninic masses according to the “Extrusion” model;
– the indentation of the Penninic mobile masses within the colder and more rigid Adriatic crust cannot be easily sustained. Wedging of the Adriatic stiffened lower crust, under high stresses and into the weaker Penninic domain, can be a more suitable hypothesis. Furthermore, the intrusion of the European Penninic crustal wedge underneath the Dolomites upper crust is not supported by any significant uplifting of the Dolomites. The total average uplift of the Dolomites during the Neogene appears to be 6−7 times smaller than that recognized in the TW. Markedly the northward dip of the PL, reaching a depth of approximately 20 km, is proposed in our interpretation;
– finally, the Adriatic upper crustal evolution points to the late post-collision change in the tectonic grow-up of the Eastern Alps orogenic chain. The tectonic accretion of the northern frontal zone of the Eastern and Central Alps was interrupted from the Late Miocene (Serravallian–Tortonian) onward, as documented by the Molasse basin evolution. On the contrary, the structural nucleation along the S-vergent tectonic belt of the eastern Southern Alps (Montello–Friuli thrust belt) severely continued during the Messinian and the Plio–Pleistocene. This structural evolution can be considered to be consistent with the deep under-thrusting and wedge indentation of the Adriatic lithosphere underneath the southern side of the Eastern Alps thrust-and-fold belt.
Similarly, the significance of the magmatic activity for the construction of the Southern Alps crust and for its mechanical and geological differentiation, which qualified the evolution of the thrust-and-fold belt, is highlighted, starting with the Permian–Triassic magmatism and progressing with the Paleogene occurrences along the Periadriatic Lineament and in the Venetian Magmatic Province (Lessini–Euganei Hills).  相似文献   

10.
A type of continental-oceanic transition zone, referred to as the Columbian transition zone, is distinguished from two other commonly known types of these zones. The subsidence of the Earth's crust, typical of all transition zones, is shown to be connected (by geophysical properties) to the transformation of continental crust into intermediate crust and later into oceanic. The most likely mechanisms of such changes are the basification of continental crust, its foundering, block by block, into the heated upper mantle, and its substitution by new oceanic crust. The evolution of transition zones of the Pacific type is largely influenced by deep faults, which reach down to the level of undepleted mantle. From this level, the volatile products rise to the surface which results in the formation of calc-alkali magmas on island arcs. The Benioff zones are deep faults, whose inclinations are dependent on the density contrasts in the upper mantle on either side of the Benioff zones. The denser mantle flows beneath the mantle of lower density. This phenomenon is depicted by plate tectonics as subduction.On the whole, the evolution of transition zones gives rise to the growth of the oceans at the expense of the continents, though oceanic crust becomes thicker by addition of volcanogenic layers composed of andesite, in the transition zones (type two) of the Pacific type at island arcs.  相似文献   

11.
To assess the possibility that the North Atlantic Ocean may subduct at Scotian basin east of Canada, we investigate the present compensation state of this deep basin. A Fourier domain analysis of the bathymetry, depth to basement and observed gravity anomalies over the oceanic area east of Nova Scotia indicates that the basin is not isostatically compensated. Moreover, the analysis emphasizes that in addition to the sediments, density perturbations exist beneath the basin. The load produced by the sediments and these density perturbations must have been supported by the lithosphere. We simulate the flexure of the lithosphere under this load by that of a thin elastic plate overlying an inviscid interior. It is shown that a plate with a uniform rigidity does not adequately represent the lithosphere beneath the basin as well as the oceanic lithosphere far from the basin, rather the rigidity of the lithosphere directly beneath the basin is about one to two orders of magnitude smaller than elsewhere. We relate this weakening to the thermal blanketing effects of the thick sediments and the fact that the lithosphere has a temperature-dependent rheology. We suggest that this weak zone would have a controlling effect on the reactivation of normal faults at the hinge zone of the basin, that were formed during the break-up of Africa and North America and were locked in the early stages after the break-up. The weak zone would facilitate reactivation of the faults if tensional stresses were produced by possible reorientation of the spreading direction of the North Atlantic Ocean in the future. The reactivation of the faults would create a free boundary condition at the hinge zone, allowing further bending of the lithosphere beneath the basin and juxtaposition of this lithosphere to the mantle beneath the continent. This may provide a favorable situation for initiation of slow subduction due to subsequent compressional forces.  相似文献   

12.
Throughout its history, the Earth has experienced global magmatic events that correlate with the formation of supercontinents. This suggests that the distribution of continents at the Earth's surface is fundamental in regulating mantle temperature. Nevertheless, most large igneous provinces (LIPs) are explained in terms of the interaction of a hot plume with the lithosphere, even though some do not show evidence for such a mechanism. The aggregation of continents impacts on the temperature and flow of the underlying mantle through thermal insulation and enlargement of the convection wavelength. Both processes tend to increase the temperature below the continental lithosphere, eventually triggering melting events without the involvement of hot plumes. This model, called mantle global warming, has been tested using 3D numerical simulations of mantle convection [Coltice, N., Phillips, B.R., Bertrand, H., Ricard, Y., Rey, P. (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–394.]. Here, we apply this model to several continental flood basalts (CFBs) ranging in age from the Mesozoic to the Archaean. Our numerical simulations show that the mantle global warming model could account for the peculiarities of magmatic provinces that developed during the formation of Pangea and Rodinia, as well as putative Archaean supercontinents such as Kenorland and Zimvaalbara.  相似文献   

13.
The effective elastic thickness of the lithosphere in the Williston Basin region has been determined for several time intervals by fitting an elastic flexure equation to the shape of the basin over time. The elastic thickness increases from about 40 km just after the basin began subsiding (450 m.y. B.P.) to about 80 km at the present.These results agree well with the increasing elastic thickness with age predicted for a cooling, 250 km-thick plate (taking elastic thickness to be depth to the 450°C isotherm) if we assume a thermal age of the lithosphere of about 500 m.y. Radiometric dates of basement in the area, however, generally yield ages of 1.7 b.y. (Churchill Province) and 2.5 b.y. (Superior Province).Because basement ages are generally much greater than the inferred lithospheric thermal age in the Williston Basin region, we suggest that lithosphere in this area was thermally rejuvenated, about 500 m.y.B.P., by the same process(es) responsible for the thermal subsidence of the basin. Temperatures were not high enough in the upper crust to reset most radiometric clocks. Additional support for a thermal event 500 m.y.B.P. comes from fission-track ages and a single Rb-Sr age of basement rocks of about 500 m.y.Lithospheric rejuvenation has been modelled using a one-dimensional finite-difference thermal model. The base of a 250 km-thick plate is heated from 1333°C to 1850°C (approximately the solidus of basalt at that depth) for approximately 100 m.y. With conduction only, the depth to the 450°C isotherm slowly decreases, then slowly increases after heating ceases. Rapid thinning and slow thickening of the lithosphere can be achieved only if convective thinning is simulated in the model. The model with convection yields results consistent with the observed increase in lithospheric thickness as well as the observed subsidence of the basin over time.  相似文献   

14.
Eleven new analyses and modes of comendite obsidians are presented, and compared with all available data on similar rocks. Most specimens are aphyric or contain only sparse phenocrysts, most commonly alkali feldspar. The oxides SiO2, Al2O3, Na2O and K2O total over ninety percent by weight in all analyses. Iron, as FeO, is the only other constituent rising above one percent by weight. When the analyses are projected into the system Na2O-K2O-Al2O3-SiO2, oceanic and continental samples group differently. Oceanic specimens have a compositional spread ranging from trachytic to the quartz-feldspar cotectic zone, consistent with derivation through a trachyte magma stem. Continental comendites show a strong correlation with the experimentally determined quartz-feldspar minima along a path of increasing peralkalinity. These differences presumably reflect the contrasting environments of magma generation, and suggest an origin by partial melting within the continental crust for the continental comendite obsidians.  相似文献   

15.
16.
中国大陆岩石圈岩石学结构、类型与不均一性   总被引:2,自引:0,他引:2       下载免费PDF全文
根据中国大陆的地质特征和现今地球物理特征,区分不同地区的岩石圈类型;依据岩石学方法、地球演化模型、地震波速与成分的关系等综合方法,建立了相应类型岩石圈的岩石学结构;根据岩石圈的动力学性质,划分出中国大陆克拉通、造山带、裂谷、边缘海洋壳和岛弧等5大岩石圈类型,首次构建出中国大陆岩石圈岩石学结构模型,展示了中国大陆岩石圈的不均一特征。  相似文献   

17.
Granites and thermal structures in the lithosphere   总被引:1,自引:0,他引:1  
The production of melts of the granite clan on a significant scale requires participation of continental crust. Such crust will melt when heated from below by a mantle thermal anomaly, or when thickend to 40 km or more. Sites of melting, and the time sequences of melting associated with subduction and underplating processes, and collision processes, are complex. In both these processes, at least six melting sites may be involved. The final chemical and isotopic composition of granitic melts depends on a very complex array of processes, which include: source composition, composition of subducted materials, magma mixing, magma underplating, assimilation-fractionation-cooling processes. Resolution of granite melt dynamics requires an integrated attack, using modern seismic and electrical measurements, in regions where the continental crust is abnormally thick or hot.
Zusammenfassung Die Produktion von Granitschmelzen im grö\eren Ausma\e erfordert die Beteiligung kontinentaler Kruste. Die Kruste wird aufgeschmolzen, wenn sie von unten durch eine Wärmeanomalie des Mantels aufgeheizt wird oder wenn sie mächtiger als 40 km wird. Der Ort des Aufschmelzens und die Zeitabfolge des Schmelzens, die im Zusammenhang mit Subduktion Plattenstapelung und Kollisionsprozessen ablaufen, sind äu\erst komplex. Diese Prozesse sind mindestens auf sechs verschiedene Areale zu lokalisieren, in denen Aufschmelzung möglich ist. Die endgültige chemische und isotopenchemische Zusammensetzung von Granitschmelzen hängt von einer sehr komplexen Proze\abfolge ab, wobei zu berücksichtigen sind: Die Zusammensetzung des Ausgangsmaterials, die Zusammensetzung subduzierten Materials, Magmenmischung, Magmenunterströmung und Proze\e der Assimilation, Fraktionierung und Abkühlung. Um die Dynamik einer Granitschmelze zu erkennen, bedarf es moderner seismischer und geoelektrischer Methoden in Gegenden, wo die kontinentale Kruste ungewöhnlich dick oder hei\ ist.

Résumé La production en quantité importante de liquides de la famille granitique requiert la participation de la croûte continentale. Celle-ci fond lorsqu'elle est chauffée d'en bas par une anomalie thermique du manteau, ou quand son épaisseur s'accroÎt jusqu'à 40 km ou plus. Les endroits où se développe la fusion, ainsi que son déroulement temporel, associé aux processus de subduction et d'underplating, sont complexes. Pour chacun de ces deux processus, six sites de fusion ou moins peuvent Être définis. Les compositions chimique et isotopique finales des liquides granitiques dépendent d'un ensemble de processus très complexes, qui comportent: la composition de la source, la composition des matériaux subductés, le mélange de magmas, les processus d'assimilation, de fractionement et de refroidissement.La compréhension de la dynamique de la fusion granitique requiert une approche intégrée qui comporte la mise en oeuvre de méthodes sismiques et géoélectriques modernes dans des régions où la croûte continentale est anormalement chaude ou anormalement épaisse.

. , , , 40 . , . , , , . , : , , , , . , , , .


Based on a lecture presented at the Granit Symposium, Gie\en 1986. London  相似文献   

18.
Seismic tomographic data showing the mantle structure of the Ethiopian-Afar superplume and various segments of the Alpine-Himalayan Orogenic Belt and their relationships with the adjacent megastructures of the Earth are presented. These data and their correlation with the geological evidence lead to the conclusion that lateral flows of mantle material are crucial for the evolution of the Tethys and its closure in the Cenozoic with transformation into an orogenic belt. The lateral flow of hot upper mantle asthenospheric matter spreading from the stationary superplume extending in the meridional direction (in present-day coordinates) was responsible for the accretion of the fragments torn away from Gondwana to Eurasia and for the development of subduction at the northeastern flank of the Tethys. The characteristic upper mantle structure of cold slabs passing into nearly horizontal lenses with elevated seismic wave velocity in the lowermost upper mantle is currently retained in the Indonesian segment of the orogenic belt. In the northwestern segments of this belt, a hot asthenospheric flow reached its northern margin after closure of the Tethys and onset of collision, having reworked the former structure of the upper mantle and enriched it in aqueous fluids. The effect of this active asthenosphere on the lithosphere gave rise to intense Late Cenozoic deformation, magmatism, and eventually resulted in mountain building.  相似文献   

19.
A third type of transition zones from oceanic to continental crust here called Columbian, is proposed, in addition to the two more commonly known types. Subsidence of the Earth's crust, typical of all transition zones, is shown to be connected (by geophysical properties) with the transformation of continental crust into intermediate crust and later into oceanic. The most likely mechanism of such changes is the basification of continental crust, its foundering, block by block, into the heated upper mantle, and its substitution by the new oceanic crust. The evolution of transition zones of Pacific type is largely influenced by deep faults, which reach down to the level of undepleted mantle; from this level to the surface the volatile products rise as the essential means of formation of calc-alkali magmas on island arcs. Benioff zones are deep faults whose inclination is secondary and connected with the density contrast in the upper mantle on either side of the Benioff zone. The denser mantle flows under less dense mantle, whereas the subduction phenomenon, as depicted by plate tectonics, is nonexistent.On the whole, the evolution of transition zones tends towards growth of the oceans at the expense of the continents, but oceanic crust thickens by addition of volcanogenic layers of andesitic composition in transition zones of Pacific type, on island arcs of the Second type.
Zusammenfassung Den Übergangszonen zwischen ozeanischer und kontinentaler Kruste, die bisher in zwei Typen eingeteilt wurden, wird eine dritte hinzugefügt. Diese wird hier Kolumbische Übergangszone genannt. Es wird gezeigt, daß Subsidenz der Erdkruste, typisch für alle Übergangszonen, verbunden ist mit der Transformation kontinentaler Kruste in intermediäre und schließlich in ozeanische Kruste. Der wahrscheinlichste Mechanismus für diese Veränderungen ist die Sockelbildung der kontinentalen Kruste, ihr blockweises Eingehen in den heißen Oberen Mantel und schließlich ihre Umwandlung in neue ozeanische Kruste.Die Evolution der Übergangszonen vom pazifischen Typ ist stark beeinflußt durch tiefgreifende Störungen, die bis in den Mantel reichen. Von diesem Niveau steigen die beweglicheren Produkte als die wesentlicheren Anteile der Kalkalkali-Magmen an Inselbögen auf bis hin zur Oberfläche.Benioff-Zonen sind tiefgreifende Störungen, deren Einfallen sekundär und an die Dichte Unterschiede innerhalb des Oberen Mantels auf ihren beiden Seiten gebunden ist. Die dichteren Mantelanteile fließen unter die weniger dichten, wohingegen das Phänomen der Subduktion, wie es im Rahmen der Plattentektonik dargestellt wird, nicht existiert.Die Evolution der Übergangszonen tendiert im großen und ganzen zur Ausbreitung der Ozeane auf Kosten der Kontinente. Die ozeanische Kruste verstärkt sich in den Übergangszonen des pazifischen Typs durch Anbau vulkanogener Lagen mit andesitischer Zusammensetzung.

Résumé Aux zones de transition entre la croûte continentale et la croûte océanique, jusqu'à présent ramenées à deux types, s'en ajoute une troisième, ici dénommée»Zone de transition colombienne«. On montre ici que la subsidence de l'écorce terrestre, typique pour toutes les zones de transition, est reliée (par des propriétés géophysiques) à la transformation de la croûte continentale en une croûte intermédiaire et ensuite océanique. Le mécanisme le plus probable de ces changements consiste dans la basification de la croûte continentale, son effondrement bloc après bloc dans le manteau supérieur rechauffé, et sa substitution par la nouvelle croûte océanique. L'évolution des zones de transition de type Pacifique est largement influencée par des failles profondes descendant jusqu'au niveau du manteau intact, niveau à partir duquel les produits volatiles montent vers la surface, en temps qu'éléments essentiels pour la formation des magmas calco-alcalins dans les arcs insulaires. Les zones de Benioff sont des failles profondes dont l'inclinaison est secondaire, et en liaison avec les contrastes de densité dans le manteau supérieur de chaque côté de la zone Benioff. Le manteau plus dense s'écoule sous le manteau moins dense, étant entendu que le phénomène de subduction, tel que le décrit la tectonique de plaques, est inexistant. — Dans l'ensemble, l'évolution des zones de transition tend vers la croissance des océans aux dépens des continents, tandis que la croûte océanique s'épaissit par addition des couches volcanogènes de composition andésitique dans les zones de transition de type Pacifique, sur les arcs insulaires du second type.

, . , ( ) . , ( ) . , , , . , . , , , . , .
  相似文献   

20.
Recent observations of crustal rifting in the NE-Iceland axial zone are summarized and discussed. The thermal state of the crust in the axial zone is discussed on the basis of thermal gradient measurements, magnetotelluric soundings, and modelling of the accretion mechanism. The three independent methods are in good general agreement. Thermal modelling indicates that a zone of partial melting generally exists below approximately 6 km depth in the axial zone. It is suggested, that thermal stresses induced by the cooling of the lithosphere as it moves away from the axis are largely responsible for the off-axis volcanism, and that the thermal stresses also contribute to enhancing the vertical permeability for geothermal waters at intermediate crustal depths on the flanks of the axial zone.
Zusammenfassung Neue Beobachtungen von Driftbewegungen der Erdkruste in dem zentralen Bereich der aktiven Riftzone in Nordost-Island werden zusammengefaßt und diskutiert. Der thermische Zustand der Zentralzone wird diskutiert an Hand von Temperaturgradientmessungen, magnetotellurischen Messungen und Modelrechnungen, die die Entstehung der Kontinentalplatten beschreiben. Die Ergebnisse der drei unabhängigen Methoden sind in guter Übereinstimmung miteinander. Thermische Modelrechnungen weisen darauf hin, daß in einer Tiefe von etwa 6 km unterhalb der zentralen Zone, eine Schicht von teilweise geschmolzenen Gesteinsmassen allgemein vorhanden ist. Es wird vorgeschlagen, daß thermische Spannungen, die durch die Abkühlung der Lithosphäre auf seiner Bewegung weg von der zentralen Riftzone erzeugt werden, hauptsächlich für die vulkanische Aktivität außerhalb der Zentralzone verantwortlich sind. Die thermischen Spannungen erhöhen vermutlich auch eine vertikale Permeabilität für geothermales Wasser in der mittleren Kruste an den Flanken der aktiven Zone.

Résumé L'auteur résume et discute des observations récentes de formation de rift crustal dans la zone axiale du NE de l'Islande. Il discute l'état thermique de la croûte dans la zone axiale sur la base de mesures du gradient thermique, de sondages magnéto-telluriques et d'un modèle du mécanisme d'accroissement. Ces trois méthodes indépendantes sont en général en bon accord. Le modèle thermique indique qi'il existe généralement une zone de fusion partielle en-dessous d'une profondeur approximative de 6 km dans la zone axiale. Il est suggéré que des tensions thermales induites par le refroidissement de la lithosphere au fur et à mesure qu'il s'écarte de l'axe sont largement responsables du volcanisme à l'écart de l'axe, et que les tensions thermiques contribuent aussi à activer la perméabilité, suivant la verticale, pour les eaux chaudes aux profondeurs crustales moyennes sur les flancs de la zone axiale.

- . - , , . . , 6- . . , , , . , , .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号