首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a 10-day aquarium experiment,this investigation examines macrophyte restoration in eutrophic Lake Taihu,the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte,Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase(SOD) activity of the plant's leaves and induced the catalase(CAT) and peroxidase(POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations,whereas the malonaldehyde(MDA) increased significantly at chlorophylla(Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 109 μg/L. Additionally,high biomass of V. asiatica(2 222 g FW/m 2) can inhibit the reproduction of cyanobacteria more significantly than low biomass(1 111 g FW/m2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L,as expressed by the increased MDA in leaves,compared with low biomass of V. asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.  相似文献   

2.
Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun,Egypt.Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and El-Wadi drainage systems.A total of 15 holozooplankton species were identified.The salinity in Lake Qarun increased and fluctuated since 1901:12 g/L in 1901;8.5 g/L in 1905;12.0 g/L in 1922;30.0 g/L in 1985;38.7 g/L in 1994;35.3 g/L in 2006,and 33.4 g/L in 2011.The mean concentration of nutrients(nitrate,nitrite and orthophosphate) gradually increased from 35,0.16 and 0.38 ? g/L,respectively,in 1953–1955 to 113,16.4,and 30.26 ? g/L in 2011.From 1999–2003 some decrease of species diversity occurred.Average total zooplankton density was 30 000 ind./m 3 in 1974–1977;356 125 ind./m 3 in 1989;534 000 ind./m 3 in 1994–1995;from 965 000 to 1 452 000 ind./m 3 in 2006,and 595 000 ind./m 3 in 2011.A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011.There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes.We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake.A marine community had formed in the lake,and it continues to change.One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community.Eutrophication also plays an important role.The introduction of Mnemiopsis leidyi,first reported in 2014,may lead to a start of a new stage of the biotic changes in Lake Qarun,when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.  相似文献   

3.
Carbon biomass,carbon-to-chlorophyll a ratio(C:Chl a),and the growth rate of phytoplankton cells were studied during four seasonal cruises in 2017 and 2018 in Jiaozhou B ay,China.Water samples were collected from 12 stations,and phytoplankton carbon biomass(phyto-C) was estimated from microscopemeasured cell volumes.The phyto-C ranged from 5.05 to 78.52 μg C/L in the bay,and it constituted a mean of 38.16% of the total particulate organic carbon in the bay.High phyto-C values appeared mostly in the northern or northeastern bay.Diatom carbon was predominant during all four cruises.Dinoflagellate carbon contributed much less(30%) to the total phyto-C,and high values appeared often in the outer bay.The C:Chl a of phytoplankton cells varied from 11.50 to 61.45(mean 3 1.66),and high values appeared in the outer bay during all four seasons.The phyto-C was also used to calculate the intrinsic growth rates of phytoplankton cells in the bay,and phytoplankton growth rates ranged from 0.56 to 1.96/d;the rate was highest in summer(mean 1.79/d),followed by that in fall(mean 1.24/d) and spring(mean 1.17/d),and the rate was lowest in winter(mean 0.77/d).Temperature and silicate concentration were found to be the determining factors of phytoplankton growth rates in the bay.To our knowledge,this study is the first report on phytoplankton carbon biomass and C:Chl a based on water samples in Jiaozhou B ay,and it will provide useful information for studies on carbon-based food web calculations and carbon-based ecosystem models in the bay.  相似文献   

4.
Abstrac t The distributions of dimethylsulfide(DMS) and its precursor dimethylsulfoniopropionate(DMSP) in surface water of the Yellow Sea and the Bohai Sea were studied during June 2011. The mean concentrations and ranges of DMS, dissolved DMSP(DMSPd), and particulate DMSP(DMSPp) in surface waters were 6.85(1.60–12.36), 7.25(2.28–19.05) and 61.87(6.28–224.01) nmol/L, respectively. There were strong correlations between DMSPp and chlorophyll a in the Bohai Sea and the North Yellow Sea, respectively, and concentrations of DMS and DMSP were high, with a relatively high proportion of dinoflagellates, in the region of the South Yellow Sea Cold Water Mass. Results show that phytoplankton biomass and species composition were important factors that controlled the distribution of DMS and DMSP. Complex environmental factors, including nutrients, transparency, and terrestrial runoff, might also influence the variability in DMS and DMSP. Biological production and consumption rates of DMS in the Bohai Sea were higher than those in the Yellow Sea. DMS production rates were closely correlated with DMSPd concentrations. DMS and DMSP exhibited obvious diel variations, with high concentrations occurring in the late afternoon(16:00–19:00) and low concentrations occurring during the night, implying that the intensity of solar radiation had a significant influence on these variations. Size distributions of chlorophyll a and DMSPp were also investigated and large nanoplankton(5–20 μm), mainly diatoms, contributed significantly to chlorophyll a and DMSPp at most stations. The average sea-to-air flux of DMS in the study area was estimated to be 11.07 μmol/(m2 ·d) during the summer.  相似文献   

5.
Cyanobacterial blooms occur in eutrophic lakes worldwide, and greatly impair these ecosystems. To explore influences of cyanobacterial blooms on dynamics of both particulate organic matter(POM) and dissolved organic matter(DOM), which are at the base of the food chain, an investigation was conducted from December 2014 to November 2015 that included various stages of the seasonal cyanobacterial blooms(dominated by M icrocystis) in a large-shallow eutrophic Chinese lake(Taihu Lake). Data from eight sites of the lake are compiled into a representative seasonal cycle to assess general patterns of POM and DOM dynamics. Compared to December, 5-fold and 3.5-fold increases were observed in July for particulate organic carbon(POC, 3.05–15.37 mg/L) and dissolved organic carbon(DOC, 5.48–19.25 mg/L), respectively, with chlorophyll a(Chl a) concentrations varying from 8.2 to 97.7 μg/L. Approximately 40% to 76% of total organic carbon was partitioned into DOC. All C, N, and P in POM and DOC were significantly correlated with Chl a. POC:Chl a ratios were low, whereas proportions of the estimated phytoplankton-derived organic matter in total POM were high during bloom seasons. These results suggested that contributions of cyanobacterial blooms to POM and DOC varied seasonally. Seasonal average C:P ratios in POM and DOM varied from 79 to 187 and 299 to 2 175, respectively. Both peaked in July and then sharply decreased. Redundancy analysis revealed that Chl a explained most of the variations of C:N:P ratios in POM, whereas temperature was the most explanatory factor for DOM. These findings suggest that dense cyanobacterial blooms caused both C-rich POM and DOM, thereby providing clues for understanding their influence on ecosystems.  相似文献   

6.
The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12'S, 70°30'E, 73°E and 75(30'E) at December 18-26, 1998 and January 12-18, 1999 in Prydz Bay and its north sea area, Antarctica. The results showed that surface chlorophyll a concentration were 0. 16 -3. 99 μg dm-3. The high values of chlorophyll a concentration (more than 3.5 μg dm -3) were in Prydz Bay and in the west Ladies Bank. The average chlorophyll a concentration at sub-surface layer was higher than that at surface layer; its concentration at the deeper layers of 50 m decreased with increasing depth and that at 200 m depth was only 0. 01 -0. 95μg dm -3. The results of size-fractionated chlorophyll a showed that the contribution of the netplanktion to total chlorophyll a was 56% , those of the nanoplankton and the picoplankton were 24% and 20% respectively in the surveyed area. The potential primary productivity at the euphotic zone in the surveyed area wa  相似文献   

7.
The spatial and temporal variability of the phytoplankton community structure in Daya Bay, South China Sea, were identified by using HPLC-CHEMTAX analytical techniques. The highest chlorophyll a(Chl a) concentrations were observed during summer(with an average value of 0.84 μg/L) and lowest ones during winter(with an average value of 0.33 μg/L). CHEMTAX processing revealed the seasonal succession of phytoplankton species in Daya Bay. During winter, diatoms were the dominant phytoplankton species and contributed 41.5% to total Chl a. Based on Chl a concentration, the average ratio of dinofl agellates to total phytoplankton biomass substantially increased with increasing temperature and nitrogen to phosphorus(N/P) ratio, reaching 52.2% in spring. Nutrient limitation shifted from phosphorus to nitrogen during summer. Moreover, this period was associated with the predominance of diatoms, which accounted for 71.1% of Chl a. Prasinophytes and cryptophytes were the other two dominant groups and particularly dominated during winter. Cyanobacteria became an important group during summer and autumn. Canonical correspondence analysis suggested that chrysophytes, dinofl agellates, and cryptophytes were strongly associated with high nitrate concentration, ammonium, dissolved inorganic nitrogen(DIN), and N/P ratio, and were negatively associated with temperature and phosphate. Diatoms and cyanobacteria were strongly associated with temperature, phosphate, and salinity, and are negatively influenced by nitrate, ammonium, DIN, and N/P ratio. Microscopic observations and pigment HPLC information were in good agreement for diatoms and dinofl agellates in the bay. This study demonstrated the usefulness of pigment analysis in investigating the distribution of phytoplankton groups in a complex physical environment, such as Daya Bay.  相似文献   

8.
Copepod fecal pellets are ubiquitous throughout the oceans. Their production and export can represent a highly efficient pathway of carbon export. However, the role these fecal pellets play in carbon export in the Changjiang(Yangtze) River estuary is not well known. Two cruises were carried out in the Changjiang estuary in the spring and summer of 2013, during which time carbon biomass, production, and export of copepod fecal pellets were studied. Spring and summer fecal pellet carbon biomass ranged 0.30–1.01 mg C/m~3(mean=0.56±0.20 mg C/m~3) and 0.31–1.18 mg C/m~3(mean=0.64±0.24 mg C/m~3), respectively, significantly lower than phytoplankton. At most stations, fecal pellet carbon biomass was higher in surface or subsurface layers than deeper layers. Production rates ranged 0.65–1.49 pellets/(ind.?h)(mean=1.02±0.27 pellets/(ind.?h)) in spring and 0.62–1.34 pellets/(ind.?h)(mean=0.98±0.22 pellets/(ind.?h)) in summer, within the range reported in previous studies. Higher production rates of fecal pellets occurred at stations with higher chlorophyll a concentrations, and production rates of copepods of size 500–1 000 μm greater than copepods 1 000 μm during both cruises. The potential export flux of fecal pellets was slightly higher in summer(mean=68.95±14.37 mg C/(m~2 ?d)) than spring(mean=52.08±11.33 mg C/(m~2 ?d)) owing to higher summer copepod abundances. To our knowledge, this study is the first of its kind in the Changjiang estuary, and it confirms the significant role of copepod fecal pellets in local carbon export.  相似文献   

9.
Gracilaria asiatica,being highly efficient in nutrient absorption,is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate.It was cultured in a laboratory simulating field conditions,and its nutrient absorption was measured to evaluate effects of environmental conditions.Ammonia nitrogen(AN),nitrate nitrogen(NN),total inorganic nitrogen(TIN),and soluble reactive phosphorus(SRP) uptake rate and removal efficiency were determined in a 4×2 factorial design experiment in water temperatures(T) at 15℃ and 25℃,algae biomass(AB) at 0.5 g/L and 1.0 g/L,total inorganic nitrogen(TIN) at 30 μmol/L and 60 μmol/L,and soluble reactive phosphorus(SRP) at 3 and 6 μmol/L.AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN,NN,TIN,and SRP(P<0.001).G.asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L.Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations;nutrient removal efficiency decreased at higher environmental nutrient concentrations.The algae preferred to absorb AN to NN.Uptake rates of AN,NN,and SRP were significantly affected by temperature(P<0.001);uptake rate was higher for the 25℃ group than for the 15℃ group at the initial experiment stage.Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups(P<0.01).The four factors had significant interactive effects on absorption of N and P,implying that G.asiatica has great bioremedial potential in sea cucumber culture ponds.  相似文献   

10.
We assessed the potential of marine ciliate community as an indicator to coastal water quality using water samples collected from four stations in the Yellow Sea in the summer 2000. The four stations were characterized by different levels of pollution. The ciliate communities consisted primarily of tintinnids and aloricate ciliates that were <30 μm. A total of 78 species were classified: 55 species at Station 2, 51 species each at Stations 1 and 4, and 47 species at Station 3. The mean number of species at each site was 29.2±2.0 (Station 1), 28.5±2.9 (Station 2), 27.8±1.7 (Station 3), and 24.5±2.3 (Station 4). The abundance was highly variable: 19 331±11 187 ind./L at Station 1, 7 960±5 639 ind./L at Station 2, 29 015±12 999 ind./L at Station 3, and 8 190±4 658 ind./L at Station 4. Our results suggest that neither the simple chemical analysis (e.g. chemical oxygen demand, dissolved inorganic nitrogen, and phosphate) nor the eutrophication/pollution index adequately described the water quality at the four stations. The same was true of the number of species and their abundance, both of which had no correlation with the chemical indices. In contrast, Margalef’s diversity index values (3.12 at Station 2, 2.89 at Station 1, and 2.64 at Stations 3 and 4) generally discriminated the water quality status of the four stations. The difference in water quality among the stations was strongly supported by the pattern of species richness (i.e. the total number of species) of ciliates at each station. Our evaluation was consistent with the results of long-term water quality monitoring at the four stations. With increasing eutrophication, we observed also a compositional and functional shift in the ciliate assemblages from algivorous oligotrich/choreotrich to nonselective-omnivorous gymnostomatids to bacterivorous-detrivorous scuticociliatids. Thus, ciliates may be used to indicate the coastal water quality status of a given site.  相似文献   

11.
We tested the utility of chemical marking techniques in the juvenile black rockfish Sebastes schlegelii. Juveniles(30–40 mm total length) were immersed in a range of tetracycline hydrochloride(TC) solutions at concentrations ranging from 300 to 500 mg/L, and alizarin complexone(ALC) solutions at concentrations ranging from 200 to 400 mg/L in filtered sea water(salinity of 30) for 24 h, respectively. Otoliths(sagittae, asteriscus), scales, fin rays(dorsal, pectoral, ventral, anal, and caudal fin rays), and fin spines(dorsal, ventral, and anal fin spines) were sampled and used to detect fl uorescent marks after a 60-day growth experiment. With the exception of 300 mg/L TC, acceptable marks were produced in the otoliths and fin spines by all concentrations of TC and ALC. In particular, we observed clearly visible marks in the sagittae, asteriscus, and fin spines under normal light at concentrations of 200–400 mg/L, 250–400 mg/L, and 250–400 mg/L ALC, respectively. Scales and fin rays had acceptable marks at much higher concentrations(≥350 mg/L TC, ≥250 mg/L ALC for scales and ≥350 mg/L TC, ≥300 mg/L ALC for fin rays). The best mark quality(i.e., acceptable marks were observed in all sampled structures after immersion marking) were obtained following immersion in TC at between 350–500 mg/L, and ALC between 300–400 mg/L. In addition, there was no significant difference in survival and growth of TC and ALC marked fish compared to their controls up to 60 days post-marking( P 0.05).  相似文献   

12.
Zhang  Kainan  Wang  Zhenyan  Li  Wenjian  Yan  Jun 《中国海洋湖沼学报》2019,37(1):79-92
Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter(SPM) within the water column.However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scienti?c cruise in July 2016, in situ ef fective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into(1) small particles(32 μm),(2) medium particles(32–256 μm) and(3) large particles(256 μm). Large particles and medium particles dominated the total volume concentrations(VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values(0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values(0.1–1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles 32 μm in?uenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic ?ne particles, while large particles were mucus-bound organic aggregates or individual plankton.The vertical distribution of coarser particles was clearly related to water strati?cation. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of?ne material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer.Abundant large biogenic particles were present in both surface and middle layers.  相似文献   

13.
Toxic cyanobacteria(TCB) are well-known worldwide for their adverse impacts on humans. Species compositions and seasonal variations of TCB in reservoirs depend on interactions between physical and chemical factors. This study was conducted to evaluate the water quality in the Aha Reservoir, Southwest China, focusing on cyanobacteria and cyanotoxins. Water samples were collected weekly or biweekly from May to September of 2015 and used to delineate temporal variations in density and distribution of toxic cyanobacteria and cyanotoxins in the reservoir. Toxic cyanobacteria identified consisted of Aphanizomenon flos-aquae, Pseudanabaena limnetica, Cylindrospermopsis sp., and Microcystis sp., with Aphanizomenon flos-aquae and Pseudanabaena limnetica being the most common and significant toxic genera. The total biomass of cyanobacteria was 17.0 mg/L. Identification and quantification of microcystin variants were conducted by high performance liquid chromatography(HPLC) using a system equipped with a photodiode array detector. Microcystin levels were between 0–3.0 μg/L, MC-RR was around 0–3.0 μg/L and MC-LR was approximately 0–0.9 μg/L. Overall, the results of this study indicate that the investigated reservoirs should be monitored regularly to minimize potential health risks to the human population.  相似文献   

14.
15.
A cruise was undertaken from 3rd to 8th November 2004 in Changjiang (Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton. Chlorophyll-a (Chl-a) concentration ranged 0.42-1.17 μg L^-1 and 0.41-10.43 μg L^-1 inside and outside the river mouth, with the mean value 0.73 μg L^-1 and 1.86 μg L^-1, respectively. Compared with the Chl-a concentration in summer of 2004, the mean value was much lower inside, and a little higher outside the river mouth. The maximal Chl-a was 10.43 μg L^-1 at station 18 (122.67°E, 31.25°N), and the region of high Chl-a concentration was observed in the central survey area between 122.5°E and 123.0°E. In the stations located east of 122.5°E, Chl-a concentration was generally high in the upper layers above 5 m due to water stratification. In the survey area, the average Chl-a in sizes of 〉20 μm and 〈20 μm was 0.28 μg L^-1 and 1.40 μg L^-1, respectively. High Chl-a concentration of 〈20 μm size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton. Skeletonema costatum, Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water. The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl-a, as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells. Nitrate and silicate behaved conservatively, but the former could probably be the limitation factor to algal biomass at offshore stations. The distribution of phosphate scattered considerably, and its relation to the phytoplankton biomass was complicated.  相似文献   

16.
The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.25% of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH 4 + -N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.  相似文献   

17.
Pure fraction (92% - 95%) of phagocytes (FP) and a mixture of amoebocytes (62%) and morula cells (38 % )-FPMC- of the holothurian Eupentacta fraudatrix ( Holothuroidea,Dendrochirota ) were obtained by using ficoll-verographine step gradient. Basal production of reactive oxygen species (ROS) in FP quantified by using reduction of nitroblue tetrazolium (NBT) was more than twice that in FPMC. Thermostable toxin of Yersinia pseudotuberculosis (TST) at differentconcentrations ( 0.2; 0.5; 2.5 μg/ml, but not 0.1 μg/ml) stimulated NBT reduction in FPMC after 24 h incubation. In FP, TST at concentrations of 0.1 and 0.2 μg/ml inhibited and at concentrations of 0.5 and 2.5 μg/ml stimulated NBT reduction after 24 h incubation. Maximal effect was observed in FP and FPMC at TST concentrations of 0.5 and 0.2 μg/ml, respectively. Addition of catalase (0.7 μg/ml) to the cells treated with TST (2.5 μg/ml) was followed by a decrease in NBT reduction compared to that under toxin treatment alone. TST stimulated superoxide dismutase activity in ccncentration-dependent manner (maximum at 0.5 μg/ml concentration in FP) after 24 htreatment, and this stimulation was prevented by a commercial catalase. Plant lectin concanavalin A stimulated NBT reduction more than 5-fold in FPMC compared to the control. With addition of TST, lectin stimulated ROS to lesser extent than that with lectin alone. When catalase, TST, and lectin were added into the FPMC simultaneously, ROS increase was similar to that under lectin treatment alone. On the whole, data obtained indicated that ROS generation in holothurian coelomocytes especially occurs in both stimulated and not stimulated phagocytes, and that changes in ROS production by these cells may be one of the mechanisms of antibacterial protection of holothurians.  相似文献   

18.
The composition of chlorophenols in marine organisms from the southern coast of Hangzhou Bay, China, was analyzed and the health risks posed to humans assessed. A total of 19 chlorophenols from 16 types of marine organism were analyzed across nine survey sections in Hangzhou Bay. The chlorophenols were analyzed by gas chromatography-mass spectrometry using a DB-5MS quartz capillary column. The concentrations of monochlorophenol, dichlorophenol, trichlorophenol, tetrachlorophenol, and pentachlorophenol ranged from below the detection limit(ND) to 132 μg/kg, ND–51.0 μg/kg, ND–42.5 μg/kg, ND–69.0 μg/kg, and ND–9.06 μg/kg, respectively. Additionally, concentration differences between each type of chlorophenol were not significant( P 0.05). However, significant differences were found between monochlorophenol( F =8.13, P 0.01) and total chlorophenol(F =5.19, P 0.01) concentrations. As the noncarcinogenic risk indices were 0.1(10-5 –10-2) for all of the organisms, no high risk was posed by 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, and pentachlorophenol to humans consuming marine organisms from the study area. Furthermore, the carcinogenic risks posed by 2,4,6-trichlorophenol and pentachlorophenol were lower than limits set by the International Commission on Radiological Protection and the US Environmental Protection Agency. However, the noncarcinogenic and carcinogenic risks posed by chlorophenols in marine organisms from four of the survey sections(Sizaopu, Niluoshan, Longshan Town and Xinhong zha) were higher than the other survey sections.  相似文献   

19.
The Bohai Sea is a semi-enclosed marginal sea in the North West Pacific. Meiofauna samples were collected from 22 stations in the Bohai Sea to document the spatial distribution, structure, and diversity of the meiofaunal community and investigate the major factors influencing the community features. A total of 20 higher taxa of meiofauna were identified. The dominant group was Nematoda, accounting for 90.8% of the total meiofaunal abundance on average, followed by Copepoda, Bivalvia, Polychaeta, Kinorhyncha, and Ostracoda. Meiofaunal abundance ranged from 121 ± 89 ind(10 cm2)-1 to 3042 ± 1054 ind(10 cm2)-1. Diversity indices also varied among different stations, with a Margalef's richness index(d) of 1.1–3.1, Shannon-Wiener diversity index(H′) of 0.7–1.8, and Pielou's evenness index(J′) of 0.4– 0.8. Meiofaunal abundance and diversity indices were significantly lower in the areas of Bohai Bay and adjacent to Laizhou Bay. The correlation analysis showed that meiofaunal abundance and diversity indices are closely linked to variations in sediment silt-clay content, medium grain size(MDΦ), and chlorophyll-a concentrations. The ecological quality status of most stations can be ranked from poor to moderate based on meiofaunal richness. According to the value of nematode to copepod ratio(Ne:Co ratio), most stations are uncontaminated, except seven stations are slightly or moderately contaminated. Both meiofaunal richness and Ne:Co ratio indicate the poor ecological quality of three stations adjacent to Laizhou Bay. The efficiency of the meiofauna communities as environmental indicators will be tested in a greater area in the future studies.  相似文献   

20.
Biomass is an important component of global carbon cycling and is vulnerable to climate change. Previous studies have mainly focused on the responses of aboveground biomass and phenology to warming, while studies of root architecture and of root biomass allocation between coarse and fine roots have been scarcely reported in grassland ecosystems. We conducted an open-top-chamber warming experiment to investigate the effect of potential warming on root biomass and root allocation in alpine steppe on the north Tibetan Plateau. The results showed that Stipa purpurea had significantly higher total root length, root surface area and tips than Carex moocroftii. However,there were no differences in total root volume, mean diameter and forks for the two species. Warming significantly increased total root biomass(27.60%), root biomass at 0–10 cm depth(27.84%) and coarse root biomass(diameter 0.20 mm, 57.68%) in the growing season(August). However, warming had no significant influence on root biomass in the non-growing season(April). Root biomass showed clear seasonalvariations: total root biomass, root biomass at 0–10 cm depth and coarse root biomass significantly increased in the growing season. The increase in total root biomass was due to the enhancement of root biomass at 0–10 cm depth, to which the increase of coarse root biomass made a great contribution. This research is of significance for understanding biomass allocation, carbon cycling and biological adaptability in alpine grassland ecosystems under future climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号