首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) across different longitudes in the research area shows a similar double-peak structure, with two maxima (in summer and winter), and two minima (in spring and autumn). This kind of structure can also be found in NEC geostrophic transport (NGT), but in a different magnitude and phase. These differences are attributable to Ekman transport induced by the local meridional wind and transport caused by nonzero velocity at the reference level, which is assumed to be zero in the NGT calculation. In the present work, a linear vorticity equation governing a 1.5-layer reduced gravity model is adopted to examine the dynamics of the seasonal variability of NGT. It is found that the annual cycle of NGT is mainly controlled by Ekman pumping induced by local wind, and westward-propagating Rossby waves induced by remote wind. Further research demonstrates that the maximum in winter and minimum in spring are mostly attributed to wind east of the dateline, whilst the maximum in summer and minimum in autumn are largely attributed to that west of the dateline.  相似文献   

2.
The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.  相似文献   

3.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

4.
Rossby waves with linear topography in barotropic fluids   总被引:1,自引:0,他引:1  
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.  相似文献   

5.
【目的】研究Merantia、Malaks、Megi、Chaba4个连续台风引起上层海洋的响应。【方法】基于遥感和再分析数据,分析台风前海洋环境、台风做功(W)、强迫时间(tf)、降水等要素分布特征,探讨上层海洋稳定度、上升流、湍流混合动力机制如何影响中尺度涡区域的海表温度(SST)、浮游植物繁殖程度,引入动力学参数S判断海洋内部上升流和混合重要性。【结果和结论】冷涡(CE)区域海洋表层降温(SSC)(3.5℃)和叶绿素a(Chl-a)质量浓度(0.5mg/m3)对于台风响应比暖涡(AE)区更为剧烈,与其内部热力学结构有关,出现在Megi过境CE区,主要原因是海洋本身CE特征、强上升流(EPV)=2.5×10-4 m/s,S<1,台风向海洋输入巨大的能量(W>80 kJ)引起剧烈的混合夹卷、强降雨,导致海水迅速重新层化、逐渐加强的非线性CE有更强的封闭性,这些机制的共同作用将底层(营养盐跃层100m以下)富含营养盐的冷水输送到上层;Malaks过境CE(124.9°E,22.3°N)缺乏强上升流(EPV=5×10-5 m/s),以湍流混合为主(S>1);Merantia使CE区域表现下沉流(EPV<0),SSC主要是湍流混合的作用(W>25kJ),Chl-a浓度增长到0.27mg/m3。AE热力学结构比较稳定,连续台风导致SSC<2℃,Chl-a增加仅200%,Merantia、Malaks过境AE(125.1°E,20.6°N)分别以强上升流(S<1)和湍流混合(S>1)为主,混合层厚度约80 m,同时AE周围无强障碍带,易与周围水体交换,Chl-a浓度微弱增加。  相似文献   

6.
The Simple Ocean Data Assimilation (SODA) package is used to better understand the variabilities of surface current transport in the Tropical Pacific Ocean from 1950 to 1999. Seasonal variation, internnual and decadal variability analyses are conducted on the three major surface currents of the Tropical Pacific Ocean: the North Equatorial Current (NEC), the North Equatorial Countecurrent (NECC), and the South Equatorial Current (SEC). The transport of SEC is quite larger than those of NEC and NECC. The SEC has two maximums in February and August. The NEC has a small annual variation. The NECC has a maximum in October and is very weak in March and April. All currents have remarkable interannual and decadal variabilities. The variabilities of the NEC and the SEC related to the winds over them well, but the relationship between the NECC and the wind over it is not close. Analysis related to El Niño-Southern Oscillation (ENSO) suggests that before El Niño (La Niña) the SEC is weaker (stronger) and the NECC is stronger (weaker), after El Niño (La Niña) the SEC is stronger (weaker) and the SEC is weaker (stronger). There is no notable relationship between the NEC and ENSO.  相似文献   

7.
Events of decadal thermocline variations in the South Pacific Ocean   总被引:1,自引:0,他引:1  
1 INTRODUCTION It has been suggested that interior thermal anomalies that subduct into the subtropics of the North Pacific may propagate to the equatorial region of the Pacific (Russell, 1994; Deser et al., 1996; Gu and Philander, 1997; Huang and Huang an…  相似文献   

8.
基于一个高分辨率准全球海洋模式HYCOM(HYbrid Coordinate Ocean Model),研究了热带西太平洋海域赤道潜流的起源。结果表明:赤道潜流在大约130°E处开始,流核位于225 m、2°N附近,最大流速超过15 cm/s,体积输运约1.6×106 m3/s,其水源来自棉兰老海流;在东部140°E断面,赤道潜流的北部主要是由棉兰老海流提供(9.7×106 m3/s),其南部主要是来自新几内亚沿岸潜流(9.1×106 m3/s)。  相似文献   

9.
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.  相似文献   

10.
Based on the analysis of Levitus data, the climatic states of the warm pool in the Indian Ocean (WPIO) and in the Pacific Ocean (WPPO) are studied. it is found that WPIO has a relatively smaller area, a shallower bottom and a slightly lower seawater temperature than those of WPPO. The horizontal area at different depths, volumes, central positions, and bottom depths of both WPIO and WPPO show quite apparent signals of seasonal variation. The maximum amplitude of WPIO surface area’s seasonal variation is 58% larger over the annual mean value. WPIO’s maximum volume variation amplitude is 66% larger over the annual mean value. The maximum variation amplitudes of the surface area and volume of WPPO are 20.9% and 20.6% larger over the annual mean value respectively. WPIO and WPPO show different temporal and spatial characteristics mainly due to the different wind fields and restriction of ocean basin geometry. For instance, seasonal northern displacement of WPIO is, to some extent, constrained by the basin of the Indian Ocean, while WPPO moves relatively freely in the longitudinal direction. The influence of WPIO and WPPO over the atmospheric motion must be quite different.  相似文献   

11.
In the equatorial western Pacific, iron-manganese oxyhydroxide crusts(Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.  相似文献   

12.
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.  相似文献   

13.
利用2003—2012年茎柔鱼生产统计数据以及相关经济学参数,以Gordon-Schaefer生物经济模型为理论依据,以生态效益、经济效益和社会效益综合衡量作为其优化配置的基础,模拟在10种不同捕捞努力量方案下1 a、5 a、10 a、20 a茎柔鱼资源的优化配置结果,即累计的渔获量、利润和资源量状况。结果表明,捕捞努力量81和86万次方案的中长期经济效益较大,且保持在最大可持续产量时的资源量;而较大捕捞努力量(如111万次)方案短期社会效益虽好,但资源破坏严重且长期利益最低。研究认为,最适捕捞努力量应控制在81~86万次间。  相似文献   

14.
The equatorial Current in the North Pacific(NEC) is an upper layer westward ocean current, which flows to the west boundary of the ocean, east of the Philippines, and bifurcates into the northerly Kuroshio and the main body of the southerly Mindanao current. Thus, NEC is both the south branch of the Subtropical Circulation and the north branch of the Tropical Circulation. The junction of the two branches extends to the west boundary to connect the bifurcation points forming the bifurcation line. The position of the North Pacific Equatorial Current bifurcation line of the surface determines the exchange between and the distribution of subtropical and tropical circulations, thus affecting the local or global climate. A new identification method to track the line and the bifurcation channel was used in this study, focusing on the climatological characteristics of the western boundary of the North Equatorial Current bifurcation line. The long-term average NEC west boundary bifurcation line shifts northwards with depth. In terms of seasonal variation, the average position of the western boundary of the bifurcation line is southernmost in June and northernmost in December, while in terms of interannual variation, from spring to winter in the years when ENSO is developing, the position of the west boundary bifurcation line of NEC is relatively to the north(south) in EI Ni?o(La Ni?a) years as compared to normal years.  相似文献   

15.
Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.  相似文献   

16.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

17.
正Seamounts are underwater mountains that rise at least 1 000 m from the seafloor.They are generally extinct underwater volcanoes,of which a few remain active and support both vent and seamount communities.Seamounts constitute distinct submarine landscape of the world's ocean floor and over half the number of seamounts occur in the Pacific Ocean,  相似文献   

18.
The rate of regional sea level rise(SLR) provides important information about the impact of human activities on climate change.However,accurate estimation of regional SLR can be severely affected by sea surface height(SSH) change caused by the Pacific Decadal Oscillation(PDO-SSH).Here,the PDOSSH signal is extracted from satellite altimeter data by multi-variable linear regression,and regional SLR in the altimeter era is calculated,before and after removing that signal.The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific,with the strongest signal confined to the tropical and North Pacific.Over the past 20 years,the PDO-SSH accounts for about 30%-40%of altimeter-observed SLR in the regions 8°-15°N,130°-160°E and 30°-40°N,170°-220°E.Along the coast of North America,the PDO-SSH signal dramatically offsets the coastal SLR,as the sea level trends change sign from falling to rising.  相似文献   

19.
20.
南太平洋长鳍金枪鱼渔场预报模型研究   总被引:4,自引:0,他引:4  
长鳍金枪鱼资源是南太平洋金枪鱼渔业的重要目标种类,也是我国金枪鱼延绳钓的主要捕捞对象之一。根据2008-2009年我国海洋渔业公司在南太平洋海域的生产数据,结合表层、105 m和205 m水层温度,以及海面高度、叶绿素a浓度等海洋环境数据,运用一元非线性回归方法,按季度建立基于各环境因子的长鳍金枪鱼栖息地适应性指数,采用算术平均法获得基于多环境因子的栖息地指数综合模型,并用于中心渔场的预报。通过与实际作业渔场的比较与验证,结果表明:模型预报准确性达到70%以上,具较高渔情预报准确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号