首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Strontium isotope stratigraphy was performed on oyster shells from the Late Jurassic of the Lusitanian Basin (central Portugal). This represents the first approach to obtain numerical ages for these strata. The new chronostratigraphic data provide a more precise age determination of several units. After a basin-wide hiatus sedimentation in the Late Jurassic is proven in the Cabo Mondego and Cabaços formations to resume as early as the Middle Oxfordian. The Alcobaça formation can be placed in the latest Late Oxfordian to Late Kimmeridgian, while data from the upper part of the Abadia Formation indicate an Early to Late Kimmeridgian age. The Farta Pao formation ranges from the latest Kimmeridgian to the latest Tithonian. The largely synchronous Sobral, Arranhó I, and Arranhó II members are overlain by the late Early to Late Tithonian Freixial Member. The brief, local carbonate incursion of the Arranhó I member marks the Kimmeridgian–Tithonian boundary. Oysters are shown once more to be suitable for strontium isotope studies. Their calcitic shells are often unaffected by diagenesis. In particular for marginal marine Jurassic and Cretaceous strata, where belemnites are usually absent, oysters may serve as a valuable tool for isotope stratigraphy.  相似文献   

2.
Sixty low-magnesium-calcite samples from Cenomanian articulate brachiopods, belemnites and oysters from the epicontinental shelf sea of Europe were geochemically and microscopically studied in order to evaluate their preservation and potential as carriers of palaeoenvironmental information. The sampled localities in northern Spain, Germany and southern England cover the transition between subtropical (25-30°N) and temperate (33-38°N) climates. Mean Cenomanian salinity-adjusted palaeotemperatures of diagenetically unaltered terebratulid and rhynchonellid brachiopods are 25.5ǃ.3 °C in Spain and 19.4ǃ.9 °C in southern England. The resulting low-to-mid-latitude meridional temperature gradient of ~0.7 °C per degree latitude is similar to the gradient today and suggests modern heat transport values for Cenomanian low latitudes. Oxygen isotopic composition of unaltered specimens of the Upper Cenomanian belemnite Praeactinocamax plenus (mean: 0.2‰) is enriched in 18O by 1‰ in comparison to brachiopod shells. Correspondingly, Upper Cenomanian palaeotemperatures derived from belemnite calcite (~13.0ǃ.3 °C) underestimate modelled mid-latitude sea surface temperatures by ~6 °C. Since P. plenus occurs as Boreal pulse fauna during a short interval in the Late Cenomanian, its heavy oxygen isotopic composition can be attributed either to migration from a cooler and/or deeper water mass or to unknown vital effects.  相似文献   

3.
Cretaceous brachiopods (Moutonithyris dutempleana) and belemnites (Neohibolites minimus) from the (Albian) Hunstanton Red Chalk Formation (Hunstanton, UK) were isotopically analysed with the aim of identifying palaeoecological and palaeotemperature trends. Shell preservation was assessed via thin section petrography and geochemical analyses. Oxygen isotopic compositions (and corresponding temperature interpretations) of well-preserved belemnites are similar in comparison to the brachiopod shells. Assuming calcite precipitation in isotopic equilibrium, they are interpreted to have occupied the same or similar warm (15–19 °C) shallow marine environment. Further, these findings indicate that the belemnites mineralised in relatively warm waters and not in deep and cool waters as suggested for some belemnite species. The isotope data are thus inconsistent with the belemnites being associated with a cool water pulse, contrasting with events associated with the Cenomanian chalks. A difference δ13C between the belemnites and brachiopods is interpreted to originate from differences in metabolic rates.  相似文献   

4.
1 Introduction A series of studies have indicated that there were two extensional phases in the North Sea (Fig. 1). An earlier period (Late Permian-Early Triassic) of rifting occurred widely in these areas, with predominant extension direction of W-E (F?rseth, 1996; F?rseth et al., 1997). In contrast to the widely distributed Permo-Triassic extension, Jurassic extension in the North Sea were generally much more localized into the three main rift arms (Fig. 1): the Viking Graben, Moray…  相似文献   

5.
Anomalous patterns of the sedimentary architecture have been recognized in passive margins, and only recently they have been associated with plate reorganization or compressional deformations propagating from distant margins. With the aim of discussing the sedimentary architecture and the potential tectonic perturbations to the passive margin pattern, we present the revision of the stratigraphy of a fossil passive margin, involved in the retrobelt of the Alpine orogeny. The main events at the transition from rifted to passive margin have been controlled by palaeoceanography, i.e. the trophic state of surface waters that hampered the carbonate photozoan productivity for a long period between Toarcian and Callovian. Toward the latest Bajocian–earliest Bathonian, the platform productivity increased, dominated by ooids. A regressional trend up to the Middle Bathonian allowed the rapid infilling of the previous rift basin. The successive aggradation in the platform was still dominated by non-skeletal grains until the Early Oxfordian. The Middle Oxfordian to Early Kimmeridgian was a time of recovery of the palaeoceanographic conditions allowing the establishment of a hydrozoan/coral rich platform. The sedimentation rates in the platform increased at the margin of the productive Friuli–Adriatic Platform. From Late Kimmeridgian on, the sedimentation rates at the platform margin returned to the pre-Oxfordian values. At the scale of the whole Adriatic Platform, the Middle Oxfordian to Early Kimmeridgian interval is variable in thickness from 0 to 800 m, and it depicts a couple of folds of around 80–100 km of wavelength. The subsidence analysis of wells and composite logs from literature suggests this interval as a perturbation to the passive margin trend of around 3 Myr of duration. We interpret this folding event, superimposed to the passive margin subsidence, as the far field expression of the transition from intraoceanic to continental obduction, occurred at the eastern Adria active margin.  相似文献   

6.
新疆准噶尔盆地侏罗系齐古组凝灰岩SHRIMP 锆石U-Pb年龄   总被引:3,自引:0,他引:3  
王思恩  高林志 《地质通报》2012,31(4):503-509
报道了准噶尔盆地获得侏罗纪齐古组凝灰岩精确的SHRIMP锆石 U-Pb年龄164.6 Ma ± 1.4 Ma(MSWD=1.3)。该年龄值几乎相当于国际地质年表中Callovian阶的底界年龄(164.7Ma±4.0Ma)。根据地层沉积速率推算,齐古组上界年龄值应为161.8Ma,接近Callovian阶的上界(161.2Ma±4.0Ma);其上的喀拉扎组上界年龄大致在160.0 Ma左右,此年龄值应位于牛津阶(Oxfordian)的下部。另外,下白垩统下部清水河组的时代为早白垩世早期(Berriasian)。由此得出:齐古组的主体时代为中侏罗世卡洛期(Callovian), 其下部跨入了巴通期最晚期(late Late Bathonian);喀拉扎组的时代可能仅为牛津期最早期(early Early Oxfordian),反映白垩系与侏罗系之间的不整合几乎缺失了整个上侏罗统,由此推断晚侏罗世曾发生过一次较强烈的构造运动。  相似文献   

7.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Investigation of the Upper Callovian to Lower Kimmeridgian microfossils from the Makar’yev reference section (Unzha River, East European Platform) has been carried out. The section is characterized by ammonite debris and abundant associations of benthic and planktic foraminifers. It is a perfect object for stratigraphic and paleoecological researches. The biostratigraphic distribution of foraminifers from the Makar’yev section allows one to identify standard foraminifera zones of the East European Platform, as well as to upgrade some of them. The analysis of vertical and lateral ammonites and foraminiferal distribution, completed with litho stratigraphy, has precised the stratigraphic volume and position of boundaries of several lithological units.An improved stratigraphic scheme for the Kostroma area of the Moscow Depression is proposed. Analysis of the composition, structure, and dynamic changes of the foraminiferal assemblages has been performed. The morphofunctional analysis of foraminiferal genera has for the first time identified how foraminiferal morphogroups differing in their life style and feeding strategy varied with short-term paleoenvironmental changes. These morphogroup changes allow establishing four ecostratigraphic levels. These paleoecological data have been calibrated along with geochemical factors. They have shown a crisis of foraminiferal association during the Late Oxfordian and Early Kimmeridgian. A similar crisis has also been discovered in the north of Siberia, which may be an argument for its global distribution. The analysis of the taxonomic composition and the density of foraminiferal associations, in parallel with the structure of the association, has revealed a succession of transgressive and regressive events during the Late Callovian-Early Kimmeridgian. It allows the typification of each assemblage in relation with each event and underlines the occurrence of second-order sea-level fluctuations (middle part of the Middle Oxfordian and the earliest Kimmeridgian).  相似文献   

9.
Calcite fossils from New Zealand and New Caledonia provide insight into the Permian to Jurassic climatic history of Southern High Latitudes (southern HL) and Triassic Southern Intermediate Latitudes (southern IL). These results permit comparison with widely studied, coeval sections in Low Latitudes (LL) and IL. Oxygen isotope ratios of well-preserved shell materials indicate a partially pronounced Sea Surface Temperature (SST) gradient in the Permian, whereas for the Triassic no indication of cold climates in the southern HL is found. The Late Jurassic of New Zealand is characterized by a slight warming in the Oxfordian–Kimmeridgian and a subsequent cooling trend in the Tithonian. Systematic variations in the δ13C values of southern HL samples are in concert with those from LL sections and confirm the global nature of the carbon isotope signature and changes in the long-term carbon cycle reported earlier.Systematic changes of Sr/Ca ratios in Late Triassic brachiopods, falling from 1.19 mmol/mol in the Oretian (early Norian) to 0.67 mmol/mol in the Warepan (late Norian) and subsequently increasing to 1.10 mmol/mol in the Otapirian (~ Rhaetian), are observed. Also Sr/Ca ratios of Late Jurassic belemnite genera Belemnopsis and Hibolithes show synchronous changes in composition that may be attributed to secular variations in the seawater Sr/Ca ratio. For the two belemnite genera an increase from 1.17 mmol/mol in the Middle Heterian (~ Oxfordian) to 1.78 mmol/mol in the Mangaoran (~ late Middle Tithonian) and a subsequent decrease to 1.51 mmol/mol in the Waikatoan (~ Late Tithonian) is documented.  相似文献   

10.
Palaeotemperatures for the Cretaceous of India and Madagascar have been determined on the basis of oxygen isotopic analysis of well-preserved Albian belemnite rostra and Maastrichtian bivalve shells of from the Trichinopoly district, southern India, and Albian nautiloid and ammonoid cephalopods from the Mahajang Province, Madagascar. The Albian (possibly late Albian) palaeotemperatures for Trichinopoly district are inferred to range from 14.9 °C to 18.5 °C for the epipelagic zone, and from 14.3 °C to 15.9 °C for the mesopelagic zone, based on analyses of 65 samples; isotopic palaeotemperatures interpreted as summer and winter values for near-bottom shelf waters in this area fluctuate from 16.3 to 18.5 °C and from 14.9 to 16.1 °C, respectively. The mentioned palaeotemperatures are very similar to those calculated from isotopic composition of middle Albian belemnites of the middle latitude area of Pas-de-Calais in Northern hemisphere but significantly higher than those calculated from isotopic composition of Albian belemnites from southern Argentina and the Antarctic and middle Albian belemnites of Australia located within the warm-temperate climatic zone. Isotopic analysis of early Albian cephalopods from Madagascar shows somewhat higher palaeotemperatures for summer near-bottom shelf waters in this area (20.2-21.6 °C) in comparison with late Albian palaeotemperatures calculated from southern India fossils, but similar winter values (13.3-16.4 °C); however, the latter values are somewhat higher than those calculated from early Albian ammonoids of the tropical-subtropical climatic zone of the high latitude area of southern Alaska and the Koryak Upland. The new isotopic palaeotemperature data suggest that southern India and Madagascar were located apparently in middle latitudes (within the tropical-subtropical climatic zone) during Albian time. In contrast to the Albian fossils, isotope results of well-preserved early Maastrichtian bivalve shells from the Ariyalur Group, Trichinopoly district, are characterised by lower δ18O values (up to −5.8‰) but normal δ13C values, which might be a result local freshwater input into the marine environment. Our data suggest that the early Maastrichtian palaeotemperature of the southern Indian near-bottom shelf waters was probably about 21.2 °C, and that this middle latitude region continued to be a part of tropical-subtropical climatic zone, but with tendency of increasing of humidity at the end of Cretaceous time.  相似文献   

11.
黑龙江省东部中侏罗世至早白垩世沟鞭藻组合序列   总被引:5,自引:0,他引:5  
祝幼华  何承全 《地层学杂志》2003,27(4):282-288,T001
对近二十年来黑龙江省东部海相侏罗纪—白垩纪沟鞭藻地层资料进行了综合研究 ,首次为该地区建立起侏罗纪—白垩纪沟鞭藻地层序列 ,主要包含 7个组合带 (含 3个高峰带 ) ,其中绥滨地区 Callovian— Valanginian期有 4个带 ;鸡西盆地早白垩世也有 4个带 (其中包括与绥滨地区早白垩世早期同时异相的一个 )。它们自下而上为 :1)绥滨组的 Pareodinia ceratophora- N annoceratopsispellucida组合带 ;  2 )东荣组下部的 Gonyaulacysta jurassica组合带 (高峰带 ) ;  3)东荣组上部的 Amphorula delicata组合带 ;  4 )东荣组最上部的海相 Oligosphaeridium pul-cherrimum组合带 (高峰带 )或鸡西盆地滴道组的微咸水—半咸水的 Vesperopsis didaoensis- L agenorhytis granoru-gosa组合带 ,两者为同时异相关系 ;  5 )城子河组下部海相层的 Odontochitina operculata- Muderongia tetracantha组合带 (该带可进一步划分出 2个亚组合带 ) ;  6 )城子河组上部海相层的 Canningia reticulata组合带 ;  7)穆棱组下段的 Cribroperidinium ?parorthoceras组合带 (高峰带 )。  相似文献   

12.
Stable isotope and trace element analyses of 230 Jurassic (Pliensbachian–Toarcian) samples from northern Spain have been performed to test the use of geochemical variations in fossils (belemnites and brachiopods) and whole‐rock hemipelagic carbonates as palaeoceanographic indicators. Although the succession analysed (Reinosa area, westernmost Basque–Cantabrian Basin) has been subject to severe thermal alteration during burial diagenesis, the samples appear to be well preserved. The degree of diagenetic alteration of the samples has been assessed through the application of integrated petrographic, chemical and cathodoluminescence analyses. It is demonstrated that brachiopods and whole‐rock carbonates, although widely used for palaeoceanic studies, do not retain their primary marine geochemical composition after burial diagenesis. In contrast, there is strong evidence that belemnite rostra preserve original isotopic values despite pervasive diagenesis of the host rock. Well‐preserved belemnite shells (non‐luminescent to slightly luminescent) typically show stable isotope values of +4·3‰ to –0·7‰δ13C, +0·7‰ to –3·2‰δ18O, and trace element contents of <32 μg g–1 Mn, <250 μg g–1 Fe, >950 μg g–1 Sr and Sr/Mn ratios >80. This study suggests that the degree to which diagenesis has affected the preservation of an original isotopic composition may differ for different low‐Mg calcite fossil shells and hemipelagic bulk carbonates, behaviour that should be considered when marine isotopic signatures from other ancient carbonate rocks are investigated. Multiple non‐luminescent contemporaneous belemnite samples passed the petrographic and geochemical tests to be considered as palaeoceanic recorders, yet their δ13C and δ18O values exhibited moderate scatter. Such variability is likely to be related to the palaeoecological behaviour of belemnites and/or high‐frequency secular variations in sea‐water chemistry superimposed on the long‐term isotopic trend. A pronounced positive carbon‐isotope excursion (up to +4·3‰) is documented in the early Toarcian serpentinus biozone, which correlates with the Toarcian δ13C maximum reported in other European and Tethyan regions.  相似文献   

13.
14.
A high-resolution stable isotope (δ18O, δ13C) analysis of a specimen of the oyster Actinostreon marshi (J. Sowerby, 1814) from the Lower Oxfordian of the Kachchh Basin in western India was used to reconstruct average seasonal temperatures over a consecutive time interval of 10 years. The recorded temperatures during this period varied around a mean of 13 °C (maximum: 15.1 °C; minimum: 11.4 °C) with a generally low seasonality between 1 and 3 °C. Such weak seasonal changes can be expected from a subtropical palaeolatitude between 25° and 30°S. However, the low average temperatures are in contrast to studies on broadly contemporaneous fossils from Europe and the southern Malagasy Gulf which point to much warmer conditions in these areas. It is therefore proposed that the low temperatures in the Kachchh Basin are caused by upwelling currents which influenced the north-western coast of India during the Late Jurassic.  相似文献   

15.
The Oxfordian–Lower Hauterivian section of the Nordvik Peninsula (northern Central Siberia) is a reference for developing zonal scales for various fossil groups and improving the Boreal zonal standard. In the middle 1950s–late 1980s, it was studied extensively by geologists, stratigraphers, lithologists, and experts on various fossil groups. These studies yielded rich fossil and microfossil collections and a set of parallel zonal scales for various faunal groups. Recently, a new detailed ammonite zonation of the Oxfordian and Kimmeridgian units of this section has been proposed. These results contradict the previous biostratigraphic data on ammonites, foraminifers, and palynomorphs. In the present paper, all the biostratigraphic data on the Oxfordian and Kimmeridgian units of the Nordvik Peninsula (Cape Urdyuk-Khaya) and northern Central Siberia undergo a comprehensive analysis and comparison with those on the Boreal Realm. The ammonite-constrained stratigraphic position of the lower Upper Jurassic in the Cape Urdyuk-Khaya section is interpreted as Upper Oxfordian or Middle Oxfordian. In our view, this difference in the understanding is due to the misidentification of some Oxfordian ammonite forms. The zones based on other fossil groups (foraminifers, dinocysts) which were distinguished in the Upper Oxfordian and Kimmeridgian sections of the Nordvik Peninsula are well traceable circumarctically. Their stratigraphic position in various regions of the Northern Hemisphere is constrained by ammonites and bivalves. However, if we use the last alternative ammonite zonation of this section part, hardly explicable contradictions will appear in interregional foraminiferal and dinocyst correlations.  相似文献   

16.
We report the first record of Bathonian–Callovian calcareous nannofossils from a marine sedimentary sequence of the eastern Karakoram block, in northern India. The calcareous mudstones and packstones, occasionally bearing red chert nodules, yielded calcareous nanofossils and Middle Jurassic Choffatia furcula ammonoids. Middle to Upper Jurassic nannofossil assemblage is dominated by representatives of the genus Watznaueria. The occurrence of Ansulasphaera helvetica whose range is Upper Bathonian–Upper Callovian, indicates a correlation with nannofossil zones NJ12–13. The occurrence of Cyclagelosphaera wiedmannii further infer an Upper Bathonian–Callovian age. These specimens show affinities with those found in a similar sedimentary formation exposed in north Karakoram. This suggests the existence of a narrow and elongated sedimentary basin, oriented in a NW–SE direction, at a latitude of c. 25°–30°N. At that time, the Karakoram block was situated near the already welded Qiangtang block of Asia. The northern and eastern Karakoram blocks were connected during Middle Jurassic. The activity and dextral offset of the Karakoram fault separated the Jurassic sedimentary formations of the northern and eastern Karakoram blocks by c. 150 km.  相似文献   

17.
孙知明  许坤等 《地质学报》2002,76(3):317-324
本文通过对辽西朝阳地区含鸟化石层附近侏罗-白垩系蓝旗组、土城子组、义县组地层共1252块古地磁样吕的测试与分析,建立了以上沉积地层的磁极性序列,发现蓝旗组、土城子组地层的磁极性序列具有频繁的正、反极性、而义县组则为单一正极性,结合现有古生物和同位素年龄资料,对比国际中生代地磁极性年表,表明土城子组的磁极性序列相当于提塘期、基末里期、牛津期和卡洛期,其主体的地质时代应属晚侏罗世(J3),土城子组底部的地质时代应属中侏罗世(J2);并且根据义县组含鸟化石层以上层位的磁性地层研究结果,认为义县组含鸟化石的正极性带可与M16正极性时相对应,义县组含鸟类化石层的时代应属早白垩世早期,辽西白垩系/侏罗系界线很有可能位于义县组/土城子组之间。  相似文献   

18.
Groundwaters from the Tithonian/Kimmeridgian, Oxfordian and Upper Dogger aquifers, within the eastern part of the Paris basin (France), were characterised using 3H, 14C and 36Cl, and noble gases tracers, to evaluate their residence times and determine their recharge period. This information is an important prerequisite to evaluating the confinement properties of the Callovo-Oxfordian clay formation sandwiched between the Oxfordian aquifer and the Dogger aquifer, currently being investigated by the French nuclear waste management agency (Andra) for radioactive waste disposal. Data presented in this paper are used to test 4 hypotheses.  相似文献   

19.
Zeng  Yongyao  Gao  Lei  Zhao  Wenqing 《中国地球化学学报》2021,40(2):199-211

Global climate during the Jurassic has been commonly described as a uniform greenhouse climate for a long time. However, the climate scenario of a cool episode during the Callovian–Oxfordian transition following by a warming trend during the Oxfordian (163.53 to 157.4 Ma) is documented in many localities of the western Tethys. It is still unclear if a correlatable climate scenario also occurred in the eastern Tethys during the same time interval. In this study, a detailed geochemical analysis on the 1060 m thick successions (the Xiali and Suowa formations) from the Yanshiping section of the Qiangtang Basin, located in the eastern Tethys margin during the Callovian–Oxfordian periods, was performed. To reveal the climate evolution of the basin, carbonate content and soluble salt concentrations (SO42−, Cl) were chosen as climatic indices. The results show that the overall climate patterns during the deposition of the Xiali and Suowa formations can be divided into three stages: relatively humid (~ 164.0 to 160.9 Ma), dry (~ 160.9 to 159.6 Ma), semi-dry (~ 159.6 to 156.8 Ma). A similar warming climate scenario also occurred in eastern Tethys during the Callovian–Oxfordian transition (~ 160.9 to 159.6 Ma). Besides, we clarify that the Jurassic True polar wander (TPW), the motion of the lithosphere and mantle with respect to Earth’s spin axis, inducing climatic shifts were responsible for the aridification of the Qiangtang Basin during the Callovian–Oxfordian transition with a review of the paleolatitude of the Xiali formation (19.7 + 2.8/−2.6° N) and the Suowa formation (20.7 + 4.1/−3.7° N). It is because the TPW rotations shifted the East Asia blocks (the North and South China, Qiangtang, and Qaidam blocks) from the humid zone to the tropical/subtropical arid zone and triggered the remarkable aridification during the Middle-Late Jurassic (ca. 165–155 Ma).

  相似文献   

20.
The Middle Oxfordian to lowermost Upper Kimmeridgian ammonite faunas from northern Central Siberia (Nordvik, Chernokhrebetnaya, and Levaya Boyarka sections) are discussed, giving the basis for distinguishing the ammonite zones based on cardioceratid ammonites of the genus Amoeboceras (Boreal zonation), and, within the Kimmeridgian Stage, faunas–for distinguishing zones based on the aulacostephanid ammonites (Subboreal zonation). The succession of Boreal ammonites is essentially the same as in other areas of the Arctic and NW Europe, but the Subboreal ammonites differ somewhat from those known from NW Europe and Greenland. The Siberian aulacostephanid zones—the Involuta Zone and the Evoluta Zone—are correlated with the Baylei Zone (without its lowermost portion), and the Cymodoce Zone/lowermost part of the Mutabilis Zone (the Askepta Subzone) from NW Europe. The uniform character of the Boreal ammonite faunas in the Arctic makes possible a discussion on their phylogeny during the Late Oxfordian and Kimmeridgian: the succession of particular groups of Amoeboceras species referred to successive subgenera is revealed by the occurrence of well differentiated assemblages of typical normal-sized macro and microconchs, intermittently marked by the occurrence of assemblages of paedomorphic “small-sized microconchs” appearing at some levels preceeding marked evolutionary modifications. Some comments on the paleontology of separate groups of ammonites are also given. These include a discussion on the occurrence of Middle Oxfordian ammonites of the genus Cardioceras in the Nordvik section in relation to the critical review of the paper of Rogov and Wierzbowski (2009) by Nikitenko et al. (2011). The discussion shows that the oldest deposits in the section belong to the Middle Oxfordian, which results in the necessity for some changes in the foraminiferal zonal scheme of Nikitenko et al. (2011). The ammonites of the Pictonia involuta group are distinguished as the new subgenus Mesezhnikovia Wierzbowski and Rogov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号