首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New geological, geochronological and isotopic data reveal a previously unknown arc system that evolved south of the Kyrgyz Middle Tianshan (MTS) microcontinent during the Middle and Late Ordovician, 467–444 Ma ago. The two fragments of this magmatic arc are located within the Bozbutau Mountains and the northern Atbashi Range, and a marginal part of the arc, with mixed volcanic and sedimentary rocks, extends north to the Semizsai metamorphic unit of the southern Chatkal Range. A continental basement of the arc, indicated by predominantly felsic volcanic rocks in Bozbutau and Atbashi, is supported by whole-rock Nd- and Hf-in-zircon isotopic data. εNd(t) of + 0.9 to − 2.6 and εHf(t) of + 1.8 to − 6.0 imply melting of Neo- to Mesoproterozoic continental sources with Nd model ages of ca. 0.9 to 1.2 Ga and Hf crustal model ages of ca. 1.2 to 1.7 Ga. In the north, the arc was separated from the MTS microcontinent by an oceanic back-arc basin, represented by the Karaterek ophiolite belt. Our inference of a long-lived Early Palaeozoic arc in the southwestern MTS suggests an oceanic domain between the MTS microcontinent and the Tarim craton in the Middle Ordovician.The time of arc-continent collision is constrained as Late Ordovician at ca. 450 Ma, based on cessation of sedimentation on the MTS microcontinent, the age of an angular unconformity within the Karaterek suture zone, and the age of syncollisional metamorphism and magmatism in the Kassan Metamorphic Complex of the southern Chatkal Range. High-grade amphibolite-facies metamorphism and associated crustal melting in the Kassan Metamorphic Complex restricts the main tectonic activity in the collisional belt to ca. 450 Ma. This interpretation is based on the age of a synkinematic amphibolite-facies granite, intruded into paragneiss during peak metamorphism. A second episode of greenschist- to kyanite–staurolite-facies metamorphism is dated between 450 and 420 Ma, based on the ages of granitoid rocks, subsequently affected or not affected by this metamorphism. The latest episode is recorded by greenschist-facies metamorphism in Silurian sandstones and granodiorites and by retrogression of the older, higher-grade rocks. This may have occurred at the Silurian to Devonian transition and reflects reorganization of a Middle Palaeozoic convergent margin.Late Ordovician collision was followed by initiation of a new continental arc in the southern MTS. This arc was active in the Early Silurian, latest Silurian to Middle Devonian, and Late Carboniferous, whereas during the Givetian through Mississippian (ca. 385–325 Ma) this area was a passive continental margin. These arcs, previously well constrained west of the Talas-Ferghana Fault, continued eastwards into the Naryn and Atbashi areas and probably extended into the Chinese Central Tianshan. The disappearance of a major crustal block with transitional facies on the continental margin and too short a distance between the arc and accretionary complex suggest that plate convergence in the Atbashi sector of the MTS was accompanied by subduction erosion in the Devonian or Early Pennsylvanian. This led to a minimum of 50–70 km of crustal loss and removal of the Ordovician arc as well as the Silurian and Devonian forearcs in the areas east of the Talas-Ferghana Fault.  相似文献   

2.
新疆中天山古生代侵入岩浆序列及构造演化   总被引:1,自引:0,他引:1  
李平  赵同阳  穆利修  王哲  黄剑  屈涛  凤骏 《地质论评》2018,64(1):91-107
新疆中天山构造岩浆带是中亚造山带的重要组成部分,广泛分布着古生代花岗质侵入体。本研究重点对中天山南缘巴音布鲁克及巴伦台地区的花岗质侵入体进行了LA-ICP-MS锆石U-Pb测年,并获得了岩体侵位年龄由老到新分别为463±3Ma(石英闪长岩)、437±5Ma(石英闪长岩)、424±3Ma(二长花岗岩)、383±4Ma(二长花岗岩)、356±3Ma(二长花岗岩)和303±5Ma(正长花岗岩)。综合区域地质分析认为,中天山古生代侵入岩浆活动可分为四个构造岩浆演化阶段:(1)晚寒武世—晚奥陶世阶段,Terskey洋盆和南天山洋盆自新元古代打开形成广阔洋盆,Terskey洋盆在晚寒武世开始初次俯冲,于晚奥陶世洋盆闭合,南天山洋盆于早奥陶世初次俯冲,具有自西向东、由早到晚的俯冲特点;(2)早志留世—中泥盆世阶段,南天山洋盆持续向北俯冲,该阶段北天山洋开始向南侧俯冲,在伊犁地块北缘形成了弧岩浆;(3)晚泥盆世—早石炭世阶段,南天山洋盆闭合于晚泥盆世末期,在早石炭世中晚期进入残余洋盆演化阶段;(4)晚石炭世—早二叠世阶段,该阶段为后碰撞伸展环境,区域上为陆内演化阶段。  相似文献   

3.
The Chinese Tianshan Orogen marks prolonged and complicated interactions between the southwestern Palaeo-Asian Ocean and surrounding blocks. New and previously published detrital zircon chronological data from modern and palaeo-river sands were compiled to reveal its tectonic evolution. It is characterized by predominant Palaeozoic as well as minor Mesozoic and Precambrian detrital zircon ages with a multimodal characteristic. The oldest Phanerozoic zircon population (peaking at 475 Ma) is a result of subduction and closure of the early Palaeozoic Terskey Ocean. However, the absence of this peak in the Chinese North and southern South Tianshan suggests that subductions of the North and South Tianshan oceans may not have initiated until the Late Ordovician with subsequent 460–390 and 360–320 Ma arc magmatism. Similar to the magmatic suite in classic collisional orogens, the youngest massive 320–270 Ma magmatism is suggested to be post-collisional. The North and South Tianshan oceans therefore probably had their closure to form the Chinese Tianshan Orogen during the late Carboniferous. The weak Mesozoic intra-plate magmatism further rejects a late Permian–Triassic Tianshan Orogen due to a lack of extensive syn- and post-collisional magmatism. Moreover, diverse Precambrian detrital zircon age patterns indicate that the surrounding blocks have distinct evolutionary processes with short-term amalgamation during the Meso- to Neoproterozoic.  相似文献   

4.
New U–Pb zircon ages and Sr–Nd isotopic data for Triassic igneous and metamorphic rocks from northern New Guinea help constrain models of the evolution of Australia's northern and eastern margin. These data provide further evidence for an Early to Late Triassic volcanic arc in northern New Guinea, interpreted to have been part of a continuous magmatic belt along the Gondwana margin, through South America, Antarctica, New Zealand, the New England Fold Belt, New Guinea and into southeast Asia. The Early to Late Triassic volcanic arc in northern New Guinea intrudes high‐grade metamorphic rocks probably resulting from Late Permian to Early Triassic (ca 260–240 Ma) orogenesis, as recorded in the New England Fold Belt. Late Triassic magmatism in New Guinea (ca 220 Ma) is related to coeval extension and rifting as a precursor to Jurassic breakup of the Gondwana margin. In general, mantle‐like Sr–Nd isotopic compositions of mafic Palaeozoic to Tertiary granitoids appear to rule out the presence of a North Australian‐type Proterozoic basement under the New Guinea Mobile Belt. Parts of northern New Guinea may have a continental or transitional basement whereas adjacent areas are underlain by oceanic crust. It is proposed that the post‐breakup margin comprised promontories of extended Proterozoic‐Palaeozoic continental crust separated by embayments of oceanic crust, analogous to Australia's North West Shelf. Inferred movement to the south of an accretionary prism through the Triassic is consistent with subduction to the south‐southwest beneath northeast Australia generating arc‐related magmatism in New Guinea and the New England Fold Belt.  相似文献   

5.
The global plate tectonic regime in early Paleoproterozoic times is highly debated. The interval 2.45–2.2 Ga is known for a minima in juvenile magmatism, but this is not a global phenomenon. New results of whole-rock geochemistry and U–Pb-Hf analysis in igneous and detrital zircons, allied with existing isotopic and geophysical data, allow to identify and constrain the duration of magmatic flare-up and quiescence events in the western São Francisco Paleoplate. Igneous samples yield ages indicating three accretionary magmatic events, an older with ages ca. 2476.4 ± 9 Ma to 2462 ± 13 Ma, an intermediate at 2390 ± 14 Ma, and a younger from 2235 ± 26 Ma to 2201 ± 5 Ma, all presenting magmatic arc geochemical signatures. Xenoliths of quartzite and volcanic tuff from the upper greenstone sequence (Morro do Carneiro Fm.) are hosted in the 2211 ± 9 Ma tonalite and the maximum depositional age of the Morro do Carneiro basin is dated 2234 ± 12 Ma, indicating a syn-orogenic setting for this basin. Detrital zircon UPb age distribution for quartzites of the greenstone sequence shows peaks at 2.65, 2.47, 2.39, 2.27 and 2.23 Ga. Altogether, the studied rocks record an accretionary orogeny with four distinct episodes: Episode S1: 2.52–2.46 Ga, ɛHf(t) values from +0.57 to +6.36; Episode S2: 2.43–2.37 Ga, ɛHf(t) values from +0.10 to +4.30; Episode R1: 2.32–2.26 Ga, ɛHf(t) values from +1.61 to −7.23 (from detrital zircons); Episode R2: 2.24–2.20 Ga, ɛHf(t) values from +0.39 to −2.73. These early Paleoproterozoic accretionary orogenies mark the onset of amalgamation of the São Francisco continental paleoplate that surrounds the craton, with accretions of an exotic micro-block and continental magmatic arcs, indicating evolution from dominant Siderian juvenile magmatism to Rhyacian crustal magmatism. These patterns show striking similarities to the orogenies in the Mineiro Belt and North China Craton.  相似文献   

6.
We report petrologic, geochemical, and zircon U?Pb and Hf isotope data from an early Palaeozoic mafic-intermediate suite of rocks in Baluntai, heartland of the Central Tianshan. Analysed major elements of the intermediate rocks show a close affinity to metaluminous I-type granitoids, resembling arc plutons. The mafic rocks display depletions of Nb, Ta, and Ti typical of volcanic arc basalts (VAB). All of the samples fall within the subduction-related field in tectonic discrimination diagrams. Zircons from a granodiorite and a hornblende diorite yield indistinguishable crystallization ages of 475.1 ± 1.7 million years and 473.7 ± 1.6 Ma, indicating an early Palaeozoic magmatic event. Zircons in the mafic rocks yield younger crystallization ages of 427 ± 1 Ma and 426.5 ± 1.4 Ma. Combined with previous published results, our data suggest that the southward subduction of the Palaeo-Tianshan oceanic crust beneath the northern margin of the Tarim block probably began no later than Early Ordovician time and did not end prior to the middle Silurian. Zircons from the granodiorite and hornblende diorite show ?Hf(t) values of??11.19 to??5.98 and??12.85 to??6.01, respectively, suggesting the reworking of ancient crust. Correspondingly, these zircons yield two T DM2 age ranges: 2140–1812 Ma and 2241–1812 Ma, probably representing a significant episode of juvenile addition during the assembly of Columbia. In contrast, zircons from the mafic rocks yield ?Hf(t) values of 3.12–8.91 and 3.19–8.76, corresponding to the T DM1 ages ranging from 911 to 685 Ma and from 905 to 688 Ma, respectively, suggesting crustal growth in the Central Tianshan microcontinent associated with the initial break-up of Rodinia.  相似文献   

7.
Thick (∼800 m) basaltic successions from the eastern Antarctic Peninsula have been dated in the interval 180–177 Ma and preserve a transition from a continental margin arc to a back-arc extensional setting. Amygdaloidal basalts from the Black Coast region of the eastern margin of the Antarctic Peninsula represent a rare onshore example of magmatism associated with back-arc extension that defines the early phase of Weddell Sea rifting and magmatism, and Gondwana breakup. The early phase of extension in the Weddell Sea rift system has previously been interpreted to be related to back-arc basin development with associated magnetic anomalies attributed to mafic-intermediate magmatism, but with no clearly defined evidence of back-arc magmatism. The analysis provided here identifies the first geochemical evidence of a transition from arc-like basalts to the development of depleted back-arc basin basalts in the interval 180–177 Ma. The exposed Black Coast basaltic successions are interpreted to form a minor component of magmatism that is also defined by onshore sub-ice magnetic anomalies, as well as the extensive magnetic anomalies of the southern Weddell Sea. Back-arc magmatism is also preserved on the Falkland Plateau where intrusions postdating 180 Ma are associated with early phase rifting in the Weddell Sea rift system. Back-arc extension was probably short-lived and had ceased by the time the northern Weddell Sea magmatism was emplaced (<175 Ma) and certainly by 171 Ma, when an episode of silicic magmatism was widespread along the eastern Antarctic Peninsula. Previous attempts to correlate mafic magmatism from the eastern Antarctic Peninsula to the Ferrar large igneous province, or, as part of a bimodal association with the Chon Aike silicic province are both dismissed based on age and geochemical criteria.  相似文献   

8.
The Tuva-Mongolia Massif is a composite Precambrian terrane incorporated into the Palaeozoic Sayany-Baikalian belt. Its Neoproterozoic amalgamation history involves early (800 Ma) and late Baikalian (600–550 Ma) orogenic phases. Two palaeogeographic elements are identified in the early Baikalian stage — the Gargan microcontinent and the Dunzhugur oceanic arc. They are represented by the Gargan Glyba (Block) and the island-arc ophiolites overthrusting it. The Gargan Glyba is a two-layer platform comprising an Early Precambrian crystalline basement and a Neoproterozoic passive-margin sedimentary cover. The upper part comprises olistostromes deposited in a foreland basin during the early Baikalian orogeny. The Dunzhugur arc ophiolite form klippen fringing the Gargan Glyba, and show a comprehensive oceanic-arc ophiolite succession. The Dunzhugur arc faced the microcontinent, as shown by the occurrence of forearc complexes. The arc–continent collision followed a pattern similar to Phanerozoic collisions. When the marginal basin lithosphere had been completely subducted, the microcontinental edge partially underthrust the arc, and the forearc ophiolite overrode it. Continued convergence caused a break of the arc lithosphere resulting in the uplift of the submerged microcontinental margin with the overthrust forearc ophiolites sliding into the foreland basin. Owing to the lithospheric break, a new subduction zone, inclined beneath the Gargan microcontinent, emerged. Initial melts of the newly-formed continental arc are represented by tonalites intruded into the Gargan microcontinent basement and its cover, and into the ophiolite nappe. The tonalite Rb–Sr mineral isochron age is 812±18 Ma, which is similar to a U–Pb zircon age of 785±11 Ma. A period of tonalite magmatism in Meso–Cenozoic orogenic belts is recognized some 1–10 m.y. after the collision. Accordingly, the Dunzhugur island arc–Gargan microcontinent collision is conventionally dated at around 800 Ma. It is highly probable that in the early Neoproterozoic, the Gargan continental block was part of the southern (in modern coordinates) margin of the Siberia craton. It is suggested that a chain of Precambrian massifs represents an elongate block separated from Siberia in the late Neoproterozoic. The Tuva-Mongolia Massif is situated in the northwest part of this chain. These events occurred on the NE Neoproterozoic margin of Rodinia, facing the World Ocean.  相似文献   

9.
The Black Sea region comprises Gondwana-derived continental blocks and oceanic subduction complexes accreted to Laurasia. The core of Laurasia is made up of an Archaean–Palaeoproterozoic shield, whereas the Gondwana-derived blocks are characterized by a Neoproterozoic basement. In the early Palaeozoic, a Pontide terrane collided and amalgamated to the core of Laurasia, as part of the Avalonia–Laurasia collision. From the Silurian to Carboniferous, the southern margin of Laurasia was a passive margin. In the late Carboniferous, a magmatic arc, represented by part of the Pontides and the Caucasus, collided with this passive margin with the Carboniferous eclogites marking the zone of collision. This Variscan orogeny was followed by uplift and erosion during the Permian and subsequently by Early Triassic rifting. Northward subduction under Laurussia during the Late Triassic resulted in the accretion of an oceanic plateau, whose remnants are preserved in the Pontides and include Upper Triassic eclogites. The Cimmeride orogeny ended in the Early Jurassic, and in the Middle Jurassic the subduction jumped south of the accreted complexes, and a magmatic arc was established along the southern margin of Laurasia. There is little evidence for subduction during the latest Jurassic–Early Cretaceous in the eastern part of the Black Sea region, which was an area of carbonate sedimentation. In contrast, in the Balkans there was continental collision during this period. Subduction erosion in the Early Cretaceous removed a large crustal slice south of the Jurassic magmatic arc. Subduction in the second half of the Early Cretaceous is evidenced by eclogites and blueschists in the Central Pontides and by a now buried magmatic arc. A continuous extensional arc was established only in the Late Cretaceous, coeval with the opening of the Black Sea as a back-arc basin.  相似文献   

10.
The Cretaceous units exposed in the northwestern segment of the Colombian Andes preserve the record of extensional and compressional tectonics prior to the collision with Caribbean oceanic terranes. We integrated field, stratigraphic, sedimentary provenance, whole rock geochemistry, Nd isotopes and U-Pb zircon data to understand the Cretaceous tectonostratigraphic and magmatic record of the Colombian Andes. The results suggest that several sedimentary successions including the Abejorral Fm. were deposited on top of the continental basement in an Early Cretaceous backarc basin (150–100 Ma). Between 120 and 100 Ma, the appearance of basaltic and andesitic magmatism (~115–100 Ma), basin deepening, and seafloor spreading were the result of advanced stages of backarc extension. A change to compressional tectonics took place during the Late Cretaceous (100–80 Ma). During this compressional phase, the extended blocks were reincorporated into the margin, closing the former Early Cretaceous backarc basin. Subsequently, a Late Cretaceous volcanic arc was built on the continental margin; as a result, the volcanic rocks of the Quebradagrande Complex were unconformably deposited on top of the faulted and folded rocks of the Abejorral Fm. Between the Late Cretaceous and the Paleocene (80–60 Ma), an arc-continent collision between the Caribbean oceanic plateau and the South-American continental margin deformed the rocks of the Quebradagrande Complex and shut-down the active volcanic arc. Our results suggest an Early Cretaceous extensional event followed by compressional tectonics prior to the collision with the Caribbean oceanic plateau.  相似文献   

11.
The East Tianshan is a remote Gobi area located in eastern Xinjiang, northwestern China. In the past several years, a number of gold, porphyry copper, and Fe(-Cu) and Cu-Ag-Pb-Zn skarn deposits have been discovered there and are attracting exploration interest.The East Tianshan is located between the Junggar block to the north and early Paleozoic terranes of the Middle Tianshan to the south. It is part of a Hercynian orogen with three distinct E-W-trending tectonic belts: the Devonian-Early Carboniferous Tousuquan-Dananhu island arc on the north and the Carboniferous Aqishan -Yamansu rift basin to the south, which are separated by rocks of the Kanggurtag shear zone. The porphyry deposits, dated at 322 Ma, are related to the late evolutionary stages of a subduction-related oceanic or continental margin arc. In contrast, the skarn, gold, and magmatic Ni-Cu deposits are associated with post-colli-sional tectonics at ca. 290-270 Ma. These Late Carboniferous - Early Permian deposits are associated with large-scale emplacement and eruption of magmas possibly caused by lithosphere delamination and rifting within the East Tianshan.  相似文献   

12.
New U–Pb SHRIMP zircon ages combined with geochemical and isotope investigation in the Sierra de Maz and Sierra de Pie de Palo and a xenolith of the Precordillera basement (Ullún), provides insight into the identification of major Grenville-age tectonomagmatic events and their timing in the Western Sierras Pampeanas. The study reveals two contrasting scenarios that evolved separately during the 300 Ma long history: Sierra de Maz, which was always part of a continental crust, and the juvenile oceanic arc and back-arc sector of Sierra de Pie de Palo and Ullún. The oldest rocks are the Andino-type granitic orthogneisses of Sierra de Maz (1330–1260 Ma) and associated subalkaline basic rocks, that were part of an active continental margin developed in a Paleoproterozoic crust. Amphibolite facies metamorphism affected the orthogneisses at ca. 1175 Ma, while granulite facies was attained in neighbouring meta-sediments and basic granulites. Interruption of continental-edge magmatism and high-grade metamorphism is interpreted as related to an arc–continental collision dated by zircon overgrowths at 1170–1230 Ma. The next event consisted of massif-type anorthosites and related meta-jotunites, meta-mangerites (1092 ± 6 Ma) and meta-granites (1086 ± 10 Ma) that define an AMCG complex in Sierra de Maz. The emplacement of these mantle-derived magmas during an extensional episode produced a widespread thermal overprint at ca. 1095 Ma in neighbouring country rocks. In constrast, juvenile oceanic arc and back-arc complexes dominated the Sierra de Pie de Palo–Ullún sector, that was fully developed ca. 1200 Ma (1196 ± 8 Ma metagabbro). A new episode of oceanic arc magmatism at ~1165 Ma was roughly coeval with the amphibolite high-grade metamorphism of Sierra de Maz, indicating that these two sectors underwent independent geodynamic scenarios at this age. Two more episodes of arc subduction are registered in the Pie de Palo–Ullún sector: (i) 1110 ± 10 Ma orthogneisses and basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.  相似文献   

13.
西藏冈底斯构造带中段多岛弧-盆系及其演化   总被引:42,自引:2,他引:40       下载免费PDF全文
夹于班公湖-怒江和雅鲁藏布江两条巨型板块结合带之间的冈底斯构造带,并不是一个简单的陆块,而是一个经历有晚古生代-中生代复杂的多岛弧-盆系演化历史,可以划分出多个次级地质构造单元的碰撞造山带。自晚古生代以来,冈底斯构造带经历了从洋-陆转换(D-T2),盆-山转换(T3-K)和壳-幔转换(E-Q)三次构造体制的转换及复杂的演化历史。班公湖-怒江板块结合带是特提斯大洋消减、碰撞闭合的主缝合带,雅鲁藏布江洋盆则代表了特提斯大洋南侧的弧后扩张小洋盆。  相似文献   

14.
The Meso-Tethyan oceanic plateaus are becoming conspicuous as giant units on the oceanic floor and have played important roles in both continental marginal orogenesis and Tethys oceanic evolution. In this study, we present mineralogical, geochronological, geochemical and Sm–Nd isotopic data for basaltic lavas from the Namco ophiolite and a high-Mg pillow lava–dyke–gabbro association from the Pengco ophiolite in central Tibet. Zircon U–Pb and Ar–Ar dating reveals that the Namco lavas erupted at ∼181 Ma while the Pengco boninitic association formed at ∼164 Ma. The Namco lavas display nearly flat rare-earth element (REE) patterns with no Nb–Ta depletions as well as high εNd values, characteristic of oceanic plateau lava. In contrast, the Pengco high-Mg rocks exhibit low REE concentrations below the normal mid-ocean ridge basalt (N-MORB), ubiquitous Nb–Ta depletions and low εNd values, and the dykes and gabbros are characterized by U-shape REE patterns, indicating that they could have derived from a depleted mantle source that was contaminated by sedimentary flux and marking a mid-Jurassic initial intra-oceanic arc magmatism erupted on the Early Jurassic Meso-Tethyan oceanic plateau represented by the Namco ophiolite. Our Pengco boninitic rocks, along with the literature data, indicate a 167–160 Ma boninitic-like initial intra-oceanic arc within the Bangong Meso-Tethys, running from the Shiquanhe area to the Naqu area with a length of ∼1000 km, which was uniformly built on the Early Jurassic Meso-Tethyan oceanic plateau. Our literature investigation also indicates a ∼175 Ma accretionary orogeny with distinct signature of the oceanic plateau involvements along the southern Qiangtang continental margin, which is manifested by regional metamorphic, magmatic and depositional records. We thus suggest that the accretion of the Early Jurassic Meso-Tethyan oceanic plateau onto the southern Qiangtang continental margin resulted in the extensive orogeny along the continental margin, jammed the subduction zone at ∼175 Ma and induced intra-oceanic subduction initiation as well as the intra-oceanic infant arc magmatism in the Meso-Tethys at ∼164 Ma.  相似文献   

15.
Back‐arc basins hold the key in understanding the geodynamics of orogenic processes. The Qinling–Dabie orogenic belt in central China is one of the most important orogenic belts constraining the tectonic framework of eastern Asia. However, its Palaeozoic accretionary processes remain equivocal, mainly derived from the age uncertainty of the back‐arc basin in the Qinling orogen. We carried out zircon U–Pb geochronology for two pyroclastic volcanic rocks intercalated within the Erlangping back‐arc basin basalts. They yield U–Pb ages of 435.8 ± 4.2 Ma and 435.7 ± 3.8 Ma, which precisely constrain the timing of the back‐arc basin opening. The opening of the Erlangping back‐arc basin might have been triggered by the rollback of the Proto‐Tethyan oceanic slab due to the southward migration of arc magmatism at ca. 440 Ma. The Palaeozoic tectonic evolution and orogen‐scale geodynamic processes of the Qinling orogen are thus reconstructed.  相似文献   

16.

大陆边缘弧是汇聚板块边界与俯冲有关的岩浆作用产物, 通常记录了造山带弧岩浆作用、造山过程和大陆地壳形成与演化等诸多重要的地质过程。作为中亚造山带中段最南部的构造单元, 敦煌地块为传统定义上具有早前寒武纪变质结晶基底的微陆块, 其后在古生代时期经历了多期次、多阶段的与中亚造山带造山相关的构造热事件并使其发生再活化, 进而产生了一系列广泛的弧岩浆-变质作用事件。然而, 对于该陆块古生代弧岩浆作用机制和地壳构造演化历史缺乏系统的研究。本文综合近十多年来对敦煌地块的诸多最新研究进展, 系统梳理了古生代岩浆岩岩石组合类型、年代格架、地球化学组成以及同时期变质-沉积构造热事件演化特征, 得到以下认识: (1)敦煌地块古生代岩浆作用过程呈现阶段性特征, 即幕式岩浆作用, 构造位置上从东北部逐渐迁移到南部再折返到中部, 大致可划分为五期: ~510Ma、440~410Ma、390~360Ma、~330Ma和280~245Ma, 而变质作用事件主要集中在450~360Ma; (2)古生代岩浆岩类型主要以钙碱性Ⅰ型花岗岩、埃达克质岩石、少量S型花岗岩和高钾花岗岩为主, 且岩石成分从寒武纪低钾拉斑系列逐渐转变为二叠纪高钾、富硅特征; (3)同位素地球化学特征表明, 敦煌地块中-北部寒武纪-泥盆纪发育的与俯冲相关的弧岩浆对新生地壳的生长起了重要贡献, 并伴随古老地壳再造事件; 而南部泥盆纪-石炭纪岩浆作用则以古老地壳物质重熔为主; (4)基于埃达克质岩石的证据, 敦煌地块在古生代时期经历了两次显著的地壳增厚事件, 早期可能是与北山南部石板山地体/弧碰撞以及幔源岩浆底侵有关, 而晚期可能是与俯冲板片后撤或回卷相关, 地壳厚度可达~55km; (5)敦煌地块属于中亚造山带中段最南部一个具有前寒武纪基底的古老微陆块, 后期卷入了古亚洲洋南向俯冲相关的造山事件使其被强烈破坏与改造。该微陆块作为古亚洲洋南部的活动大陆边缘弧, 被与俯冲作用有关的阶段性弧岩浆底侵、部分熔融、增厚地壳和区域性变质作用等机制改造与活化, 产生了阶段性侵位的陆缘弧岩浆作用。这些认识为探究中亚造山带微陆块的起源和造山带的构造演化提供新的约束。

  相似文献   

17.
《Gondwana Research》2013,24(4):1378-1401
The Qilian Orogen at the northern margin of the Tibetan Plateau is a type suture zone that recorded a complete history from continental breakup to ocean basin evolution, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. The Qilian Ocean, often interpreted as representing the “Proto-Tethyan Ocean”, may actually be an eastern branch of the worldwide “Iapetus Ocean” between the two continents of Baltica and Laurentia, opened at ≥ 710 Ma as a consequence of breakup of supercontinent Rodinia.Initiation of the subduction in the Qilian Ocean probably occurred at ~ 520 Ma with the development of an Andean-type active continental margin represented by infant arc magmatism of ~ 517–490 Ma. In the beginning of Ordovician (~ 490 Ma), part of the active margin was split from the continental Alashan block and the Andean-type active margin had thus evolved to western Pacific-type trench–arc–back-arc system represented by the MORB-like crust (i.e., SSZ-type ophiolite belt) formed in a back-arc basin setting in the time period of ~ 490–445 Ma. During this time, the subducting oceanic lithosphere underwent LT-HP metamorphism along a cold geotherm of ~ 6–7 °C/km.The Qilian Ocean was closed at the end of the Ordovician (~ 445 Ma). Continental blocks started to collide and the northern edge of the Qilian–Qaidam block was underthrust/dragged beneath the Alashan block by the downgoing oceanic lithosphere to depths of ~ 100–200 km at about 435–420 Ma. Intensive orogenic activities occurred in the late Silurian and early Devonian in response to the exhumation of the subducted crustal materials.Briefly, the Qilian Orogen is conceptually a type example of the workings of plate tectonics from continental breakup to the development and evolution of an ocean basin, to the initiation of oceanic subduction and formation of arc and back-arc system, and to the final continental collision/subduction and exhumation.  相似文献   

18.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

19.
江达—维西陆缘火山弧的形成演化及成矿作用   总被引:16,自引:0,他引:16       下载免费PDF全文
江达-维西陆缘火山弧为金沙江弧后洋盆向西俯冲消减和斜向碰撞过程中形成,其过程经历了俯冲造弧-碰撞成弧-张裂成盆的复杂发展历史。早二叠世晚期—晚二叠世(P12-P2)形成俯冲型弧火山岩,早中三叠世(T1+2)形成碰撞型弧火山岩,晚三叠世早期(T31)于裂谷盆地中发育“双峰式”火山岩。晚三叠世早期(T31)裂谷盆地从北向南形成生达-车所-鲁麻弧后盆地、徐中-鲁春-红坡上叠(弧后)裂谷盆地和箐口塘-催依比-上兰上叠(弧后)裂谷盆地三个次级半深海-深海盆地。生达-车所-鲁麻弧后盆地的拉裂时间为11.6 Ma,速度为0.27cm/a,距离为63km;徐中-鲁春-红坡上叠(弧后)裂谷盆地的拉裂时间为16.1 Ma,速度为0.43cm/a,距离为140km;箐口塘-催依比-上兰上叠(弧后)裂谷盆地的拉裂时间16.1 Ma,速度为0.36cm/a,距离为116km。弧火山岩中形成有沉积-改造型铜、金、银、铅、锌多金属矿,裂谷(火山)盆地中形成有喷流-沉积型铜、金、银、铅、锌多金属矿。晚三叠世早期火山-沉积盆地已成为三江地区中生代重要的成矿盆地。  相似文献   

20.
The Olkhon terrane is a part of the Early Palaeozoic accretionary-collisional system in the northern Central Asian Orogenic Belt (CAOB). The terrane was produced by an Ordovician collision as a collage of numerous chaotically mixed tectonic units composed of rock complexes of different ages originated in different tectonic settings. The pre-collisional history of the terrane is deciphered using new data on zircon ages and chemistry of rocks from several complexes. The oldest Olkhon rocks are the 1.87–1.83 Ga granulite and gneissic granites of the Kaltygey complex, which is an exotic Palaeoproterozoic tectonic slice. The next age group consists of the Ust-Zunduk orthogneisses (807 ± 9 Ma) and the Orso amphibolites and gneisses (792 ± 10 and 844 ± 6 Ma). Samples of both complexes have negative εNd(t) values. The Ust-Zunduk and Orso complexes can have formed in active margins of continents or in crustal blocks other than southern Siberia. The Ediacaran subduction-related rocks of the Olkhon complex may have formed in an island arc setting within the Palаeo-Asian Ocean (PAO). The protolith of schists after volcanic rocks has an age of 637 ± 4 Ma and shows positive ɛNd(t) values. The Ediacaran/Cambrian Tonta mafic granulites (ca.545 Ma), with OIB affinity and slightly positive ɛNd(t), were derived from an enriched mantle source and may represent a fragment of an oceanic island. The Cambrian Shebarta gneisses after continental-arc greywackes with negative ɛNd(t) values were deposited in a back-arc basin of a microcontinent within the PAO, between 530 and 500 Ма. The Cambrian Birkhin metamorphics after PAO mature island-arc rocks have U-Pb ages of ca. 500–490 Ma and positive ɛNd(t) values. All pre-collisional complexes in the Olkhon terrane have their analogues among the rocks formed during main events in the northern CAOB history. Thus the reconstructed milestones in the Olkhon terrane history appear to be an echo of events in the CAOB northern segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号