首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
水面蒸发与散热系数公式研究(二)   总被引:16,自引:0,他引:16       下载免费PDF全文
濮培民 《湖泊科学》1994,6(3):201-210
根据自1976年以来全国水面蒸发与散热研究协作组在我国各典型地区的原体与室内实验资料和大量水文站历史资料,通过理论分析和统计检验,确定了影响水面蒸发的诸因子及其非线性相互作用,引入了新的无量纲参数和公式结构,用实测资料统计确定了公式中的常系数,得到了用开敞湖面一般水文气象资料计算逐日蒸发和散热系数的公式。经全国务典型气候带内务季节湖泊(水库)和受热污染水体上原体观测和室内专题实验共1860组日平均检验,公式的精度高于现有其他公式。全文分两部分,本文刊出第二部分,内容包括:公式的检验;水文气象要素对α的影响;水面散热系数的计算和结语。  相似文献   

2.
    
Abstract

Acceleration of the global water cycle over recent decades remains uncertain because of the high inter-annual variability of its components. Observations of pan evaporation (Epan), a proxy of potential evapotranspiration (ETp), may help to identify trends in the water cycle over long periods. The complementary relationship (CR) states that ETp and actual evapotranspiration (ETa) depend on each other in a complementary manner, through land–atmosphere feedbacks in water-limited environments. Using a long-term series of Epan observations in Australia, we estimated monthly ETa by the CR and compared our estimates with ETa measured at eddy covariance Fluxnet stations. The results confirm that our approach, entirely data-driven, can reliably estimate ETa only in water-limited conditions. Furthermore, our analysis indicated that ETa did not show any significant trend in the last 30 years, while short-term analysis may indicate a rapid climate change that is not perceived in a long-term perspective.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Lugato, E., Alberti, G., Gioli. B., Kaplan, J.O., Peressotti, A., and Miglietta, F., 2013. Long-term pan evaporation observations as a resource to understand the water cycle trend: case studies from Australia. Hydrological Sciences Journal, 58 (6), 1287–1296.  相似文献   

3.
鄱阳湖夏季水面蒸发与蒸发皿蒸发的比较   总被引:2,自引:1,他引:2       下载免费PDF全文
水面蒸发是湖泊水量平衡要素的重要组成部分.基于传统蒸发皿观测蒸发不能代表实际水面蒸发,而实际水面蒸发特征仍不清楚.本研究基于涡度相关系统观测的鄱阳湖水体实际水面蒸发过程,在小时和日尺度分析了水面蒸发的变化规律及其主要影响因子,并与蒸发皿蒸发进行比较.研究表明,实际水面蒸发日变化波动剧烈,变化范围在0~0.4 mm/h之间.水面蒸发的日变化特征主要受风速的影响.鄱阳湖8月份日水面蒸发量与蒸发皿蒸发量在总体趋势上具有很好的一致性.8月份平均日水面蒸发速率(5.90 mm/d)比蒸发皿蒸发速率(5.65 mm/d)高4.6%.水面日蒸发量与蒸发皿蒸发量的比值在8月上、中、下旬平均值分别为1.24、1.00、0.92,呈现下降的趋势.鄱阳湖夏季水面日蒸发量与风速和相对湿度相关性显著,而蒸发皿蒸发与净辐射、气温、饱和水汽压差和相对湿度均呈显著相关.这是由于蒸发皿水体容积小,与湖泊相比其水体热存储能力小,因此更容易受到环境因子的影响.  相似文献   

4.
    
At the mean annual scale, water availability of a basin is substantially determined by how much precipitation will be partitioned into evapotranspiration and run-off. The Budyko framework provides a simple but efficient tool to estimate precipitation partitioning at the basin scale. As one form of the Budyko framework, Fu's equation has been widely used to model long-term basin-scale water balance. The major difficulty in applications of Fu's equation is determining how to estimate the curve shape parameter ω efficiently. Previous studies have suggested that the parameter ω is closely related to the long-term vegetation coverage on large river basins globally. However, on small basins, the parameter ω is difficult to estimate due to the diversity of controlling factors. Here, we focused on the estimation of ω for small basins in China. We identified the major factors controlling the basin-specific (calibrated) ω from nine catchment attributes based on a dataset from 206 small basins (≤50,000 km2) across China. Next, we related the calibrated ω to the major factors controlling ω using two statistical models, that is, the multiple linear regression (MLR) model and artificial neural network (ANN) model. We compared and validated the two statistical models using an independent dataset of 80 small basins. The results indicated that in addition to vegetation, other landscape factors (e.g., topography and human activity) need to be considered to capture the variability of ω on small basins better. Contrary to previous findings reached on large basins worldwide, the basin-specific ω and remote sensing-based vegetation greenness index exhibit a significant negative correlation. Compared with the default ω value of 2.6 used in the Budyko curve method, the two statistical models significantly improved the mean annual ET simulations on validation basins by reducing the root mean square error from 114 mm/year to 74.5 mm/year for the MLR model and 70 mm/year for the ANN model. In comparison, the ANN model can provide a better ω estimation than the MLR model.  相似文献   

5.
Evaporation losses from four water catchment areas under different land uses and climatic conditions were calculated using formulations developed from small plot studies. These formulations, dependent on rainfall inputs, potential evaporation and air temperature, were extrapolated to the catchment scale using land classifications based on analysing remotely sensed imagery. The approach adopted was verified by comparing the estimated annual evaporation losses with catchment water use, given by the difference between rainfall inputs and stream flow outputs, allowing for changes in soil moisture. This procedure was repeated using modified values of rainfall, potential evaporation and air temperature, as given by a climate change scenario. The computed evaporation losses were used in annual water balances to calculate stream flow losses under the climate change scenario. It was found that, in general, stream flow from areas receiving high rainfall would increase as a result of climate change. For low rainfall areas, a decrease in stream flow was predicted. The largest actual changes in stream flow were predicted to occur during the winter months, although the largest percentage changes will occur during the summer months. The implications of these changes on potable water supply are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
太湖水面蒸发量预报模型及其应用   总被引:3,自引:2,他引:1       下载免费PDF全文
毛锐 《湖泊科学》1992,4(4):8-14
介绍了几种太湖水面蒸发量的数学模型和预报模型,并用其预测伏旱和夏涝期间旬、月的湖面蒸发量。最后提出应用湖面蒸发量进行太湖水位预报的方法。  相似文献   

7.
    
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30‐min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric‐based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
    
Evaporation rate estimation is important for water resource studies. Previous studies have shown that the radiation‐based models, mass transfer models, temperature‐based models and artificial neural network (ANN) models generally perform well for areas with a temperate climate. This study evaluates the applicability of these models in estimating hourly and daily evaporation rates for an area with an equatorial climate. Unlike in temperate regions, solar radiation was found to correlate best with pan evaporation on both the hourly and daily time‐scales. Relative humidity becomes a significant factor on a daily time‐scale. Among the simplified models, only the radiation‐based models were found to be applicable for modelling the hourly and daily evaporations. ANN models are generally more accurate than the simplified models if an appropriate network architecture is selected and a sufficient number of data points are used for training the network. ANN modelling becomes more relevant when both the energy‐ and aerodynamics‐driven mechanisms dominate, as the radiation and the mass transfer models are incapable of producing reliable evaporation estimates under this circumstance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
根据呼伦湖的实际水文过程,计算1963-1980年月水量平衡,在此基础上,分析库容与径流、径流+降雨、径流+降雨-蒸发的相关性.利用累积和分析水位、径流、降雨、蒸发年均值的突变情况,进而重点论述了2000年后水位持续降低的原因.同时,探讨各水平衡项的年内分布规律及相互关系.结果表明,2000年后水位的急剧降低是气候变化(暖干化)造成的.河川径流对水位的影响程度最大,其次为湖面降雨.每年4、5月,冰封期积累的降雪融化渗入地下补给湖泊,其他时间则由湖泊补给地下水.  相似文献   

10.
水面蒸发与散热系数公式研究(一)   总被引:16,自引:1,他引:15       下载免费PDF全文
根据自1976年以来全国水面蒸发与散热研究协作组在我国各典型地区的原体与室内实验资料和大量水文站历史资料,通过理论分析和统计检验,确定丁影响水面蒸发的诸因子及其非线性相互作用,引入了新的无量纲参数(w_e、Pv、Pe)和公式结构,用实测资料统计确定厂公式中的常系数,得到了用开敞湖面一般水文气象资料计算逐日蒸发和散热系数的公式。经全国各典型气候带内各季节湖泊(水库)和受热污染水体上原体观测和室内专题实验共1860组口平均资料检验,公式的精度高于现有其他公式。全文分两部分,这是第一部分,内容包括:影响水面蒸发的土要无量纲参数;感热输送和大气饱和度对蒸发影响的修正;水面蒸发计算公式的结构及其经验系数。  相似文献   

11.
Using lake Stechlin in northeastern Germany as an example of a small groundwater‐feed lake without surface inflows and outflows, we estimated the temporal scales and the variability ranges of the net groundwater contribution to the lake water budget. High‐resolution water level measurements by a bottom‐mounted pressure logger provided the background for the estimation of the total lake water budget. This method has demonstrated reliability for estimation of lake level variations during periods ranging from subdiurnal to perennial. The typical amplitudes of the synoptic‐to‐perennial variability characterizing the groundwater climate of lake Stechlin are estimated by comparing the two subsequent years 2006 and 2007; one of these years shows an extremely high, and the other an extremely low, annual precipitation–evaporation balance. The net groundwater flow, estimated as the difference between the total water budget and the precipitation–evaporation balance at the surface, revealed synoptic effects of lake water exfiltration into the groundwater aquifer following strong precipitation events. Perennial variations between wet and dry years superimposed seasonal oscillations. The probable origin of the latter is seasonality in the groundwater level on the watershed, although the exact amplitudes are subject to further quantification on account of seasonality in the evaporation estimation error. The results emphasize the non‐stationary behaviour of groundwater flow on timescales shorter than climatic ones. The analysis yielded a net quantitative relationship between groundwater flow and water balance at the lake surface: The water level changes in the lake due to evaporation and precipitation are damped to 60% because of the lake–groundwater exchange by means of intermittent infiltration and exfiltration events. Assuming the remaining 40% of the surface water budget may potentially result in perennial water level variability, we estimated an effect of the precipitation decrease on the lake water budget as predicted by the regional climate scenarios for the next century. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
    
Salt precipitation on the surface of porous media significantly affects water transport processes. Most studies on salt precipitation mainly focused on single salts, but in nature, salt precipitation usually occurs as mixtures. Consequently, information on the crystallization of salt mixtures and its effect on water transport remains scarce. This study investigated the precipitation of mixtures (the mass ratios of NaCl:Na2SO4 were 3:7, 5:5, and 7:3, respectively) of NaCl (typical efflorescence) and Na2SO4 (typical subflorescence) in the initially saturated sandy soil columns and its effect on evaporation and compared it with the cases of the two salts individually. The results showed that salt mixtures exhibited a mixed pattern of crystals including both efflorescence and subflorescence, and the efflorescence showed granular aggregation, unlike the mono-salts. The crystallization coverage of the salt mixtures was smaller than that of NaCl mono-salt; high (7:3) and low (5:5 and 3:7) proportions of NaCl led to larger and smaller crystallization coverage than that of Na2SO4 mono-salt, respectively. While the salt mixtures had less crystallization coverage than the mono-salts, they showed lower evaporation because the salt mixtures formed a denser crystallization structure of efflorescence-subflorescence-soil layer, this crystallization structure exhibited greater inhibition of water vapour diffusion, thus reducing evaporation. In addition, the crystallization of the salt mixtures with higher NaCl proportion afforded greater resistance of evaporation. The mixed crystallization pattern formed by the salt mixtures significantly enhances the crystallization resistance to evaporation.  相似文献   

13.
    
The effect of Pinus radiata (D. Don) plantations on water resources at different Chilean sites located between 33 and 40 south was determined. Incoming precipitation, canopy interception loss, evapotranspiration, net evapotranspiration (transpiration and evaporation from the soil), percolation and soil water content were measured in each site, where Pinus radiata plantations were 12 to 17 years old and between 700 and 830 trees ha?1 dense. The results were compared with those obtained from areas covered with perennial grasses and shrubs at the same sites. The pine canopies intercepted on average 36–40% of the annual rainfall at all sites where rainfall was less then 1200 mm, while only 15% of the mean rainfall was intercepted in the southernmost and rainy (2081 mm year?1) site. Annual net evapotranspiration increased from south to north from 32% of the incoming precipitation for the southernmost site to 55% for the one located at the lower latitude. In this northernmost site almost the entire incoming precipitation was evapotranspired. Annual percolation registered its minimum value in the northern site (5% of incoming precipitation) and its maxima in the southern one (53%). The values of net evapotranspiration and percolation were regulated by the pluviometric regime and the soil moisture retention capacity in each site. Compared with the shrub or grass covers, sites under Pinus radiata plantations registered higher water consumption by evapotranspiration and reduced percolation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
    
V. P. SINGH  C.-Y. XU 《水文研究》1997,11(3):311-323
Thirteen equations based on the mass-transfer method for determining free water evaporation were expressed in seven generalized equations. These seven equations were then compared with pan evaporation at four climatological stations in north-western Ontario, Canada. The comparisons were based on monthly evaporation. Equations were compared by calibrating them on the entire data sets as well as by calibrating on part of the data and then verifying them on the remainder of the data. The results of comparison showed that all equations were in reasonable agreement with observed evaporation, and that the effect of wind velocity on monthly evaporation was marginal. However, when an equation with parameters obtained at one site was applied to compute evaporation at another site, the computed evaporation was not in good agreement with observed values. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Daniel Caissie 《水文研究》2016,30(12):1872-1883
Stream temperature plays an important role in many biotic and abiotic processes, as it influences many physical, chemical and biological properties in rivers. As such, a good understanding of the thermal regime of rivers is essential for effective fisheries management and the protection aquatic habitats. Moreover, a thorough understanding of underlying physical processes and river heat fluxes is essential in the development of better and more adaptive water temperature models. Very few studies have measured river evaporation and condensation and subsequently calculated corresponding heat fluxes in small tributary streams, mainly because microclimate data (data collected within the stream environment) are essential and rarely available. As such, the present study will address these issues by measuring river evaporation and condensation in tributary 1 (Trib 1, a small tributary within Catamaran Brook) using floating minipans. The latent heat flux and other important fluxes were calculated. Results showed that evaporation was low within the small Trib 1 of Catamaran Brook, less than 0.07 mm day?1. Results showed that condensation played an important role in the latent heat flux. In fact, condensation was present during 34 of 92 days (37%) during the summer, which occurred when air temperature was greater than water temperature by 4–6 °C. Heat fluxes within this small stream showed that solar radiation dominated the heat gains and long‐wave radiation dominated the heat losses. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
    
In cold climates, the process of freezing–thawing significantly affects the ground surface heat balance and water balance. To better understand the mechanism of evaporation from seasonally frozen soils, we performed field experiments at different water table depths on vegetated and bare ground in a semiarid region in China. Soil moisture and temperature, air temperature, precipitation, and water table depths were measured over a 5‐month period (November 1, 2016, to March 14, 2017). The evaporation, which was calculated by a mass balance method, was high in the periods of thawing and low in the periods of freezing. Increased water table depth in the freezing period led to high soil moisture in the upper soil layer, whereas lower initial groundwater levels during freezing–thawing decreased the cumulative evaporation. The extent of evaporation from the bare ground was the same in summer as in winter. These results indicate that a noteworthy amount of evaporation from the bare ground is present during freezing–thawing. Finally, the roots of Salix psammophila could increase the soil temperature. This study presents an insight into the joint effects of soil moisture, temperature, ground vegetation, and water table depths on the evaporation from seasonally frozen soils. Furthermore, it also has important implications for water management in seasonally frozen areas.  相似文献   

17.
    
Evaporative flux is a key component of hydrological budgets. Water loss through evapotranspiration reduces volumes available for run‐off. The transition from liquid to water vapour on open water surfaces requires heat. Consequently, evaporation act as a cooling mechanism during summer. Both river discharge and water temperature simulations are thus influenced by the methods used to model evaporation. In this paper, the impact of evapotranspiration estimation methods on simulated discharge is assessed using a semidistributed model on two Canadian watersheds. The impact of evaporation estimation methods on water temperature simulations is also evaluated. Finally, the validity of using the same formulation to simulate both of these processes is verified. Five well‐known evapotranspiration models and five evaporation models with different wind functions were tested. Results show a large disparity (18–22% of mean annual total evapotranspiration) among the evapotranspiration methods, leading to important differences in simulated discharge (3–25% of observed discharge). Larger differences result from evaporation estimation methods with mean annual divergences of 34–48%. This translates into a difference in mean summer water temperature of 1–15%. Results also show that the choice of model parameter has less influence than the choice of evapotranspiration method in discharge simulations. However, the parameter values influence thermal simulations in the same order of magnitude as the choice of evaporation estimation method. Overall, the results of this study suggest that evapotranspiration and open water evaporation should be represented separately in a hydrological modelling framework, especially when water temperature simulations are required.  相似文献   

18.
    
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

19.
    
With changes in climate looming, quantifying often‐overlooked components of the canopy water budget, such as cloud water interception (CWI), is increasingly important. Commonly, CWI quantification requires detailed continuous measurements, which is extremely challenging, especially when throughfall is included. In this study, we propose a simplified approach to estimate CWI using the Rutter‐type interception model, where CWI inputs in the canopy vegetation are proportional to fog interception measured by an artificial fog gauge. The model requires the continuous acquisition of meteorological variables as input and calibration datasets. Throughfall measurements below the forest are used only for calibration and validation of the model; thus, CWI estimates can be provided even after the cessation of throughfall monitoring. This approach provides an indirect and undemanding way to quantify CWI by vegetation and allows the identification of its controlling factors, which could be useful to the comparison of CWI in contrasting land covers. The method is applied on a 2‐year dataset collected in an endemic highland forest of San Cristobal Island (Galapagos). Our results show that CWI reaches 21% ± 6% of the total water input during the first year, and 9% ± 2% during the second one. These values represent 32% ± 10% and 17% ± 5% of water inputs during the cool foggy season of the first and second year, respectively. The difference between seasons is attributed to a lower fog liquid water during the second season.  相似文献   

20.
    
Stable water isotope ratios are measured as a tracer of environmental processes in materials such as leaves, soils, and lakes. Water in these archives may experience evaporation, which increases the abundance of heavy isotopologues proportionally to the gradients in humidity and isotope ratio between the evaporating water and the surrounding atmosphere. The isotope ratio of the atmosphere has been difficult to measure until recently, and measurements remain scarce. As a result, several assumptions have been adopted to estimate isotope ratios of atmospheric water vapour. Perhaps the most commonly employed assumption in terrestrial environments is that water vapour is in isotopic equilibrium with precipitation. We evaluate this assumption using an eight‐member ensemble of general circulation model (GCM) simulations that include explicit calculation of isotope ratios in precipitation and vapour. We find that across the model ensemble, water vapour is typically less depleted in heavy isotopologues than expected if it were in equilibrium with annual precipitation. Atmospheric vapour likely possesses higher‐than‐expected isotope ratios because precipitation isotope ratios are determined by atmospheric conditions that favour condensation, which do not reflect atmospheric mixing and advection processes outside of precipitation events. The effect of this deviation on theoretical estimates of isotope ratios of evaporating waters scales with relative humidity. As a result, the equilibrium assumption gives relatively accurate estimates of the isotope ratios of evaporating waters in low latitudes but performs increasingly poorly at increasing latitudes. Future studies of evaporative water pools should include measurements of atmospheric isotope ratios or constrain potential bias with isotope‐enabled GCM simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号