首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Hoshbulak Zn–Pb deposit is located in South Tianshan, Xinjiang, China. The Zn–Pb orebody is tabular and stratoid in form and it is hosted in calcareous rocks of the Upper Devonian Tan'gaitaer Formation which were thrust over the Carboniferous system. The ores are mineralogically simple and composed mainly of sphalerite, galena, pyrite, calcite, dolomite and exhibit massive, banded, veinlets, colloidal, metasomatic, eutectic, concentric ring and microbial-like fabrics. The Co/Ni ratios of pyrite in the ores range from 0.46 to 0.90 by electron microprobe, which suggested that the Hoshbulak Zn–Pb mineralization was formed in a sedimentary environment. The REE patterns of the hydrothermal calcite coincide well with those of recrystallized micritic limestones, suggesting that the Hoshbulak Pb–Zn mineralization was closely genetically related to limestones of the Tan'gaitaer Formation. The C-, H- and O-isotopic compositions of hydrothermal calcite and dolomite in the ores yield δ13C(VPDB) values ranging from − 1.9‰ to + 2.6‰ (mean 0.79‰), δ18O(VSMOW) values from 22.41‰ to 24.67‰ (mean 23.04‰) and δD values from − 77‰ to − 102‰ for fluid inclusions. It is suggested that the ore-forming fluids, including CO2, were derived from the calcareous strata of the Tan'gaitaer Formation in association with hydrocarbon brines. The δ34S(VCDT) ranges from − 22.3‰ to − 8.5‰ for early ore-stage sulfides and from 5.9‰ to 24.2‰ with a cluster between 14.4‰ and 24.2‰ for the sulfides (pyrite, sphalerite, galena) in the main ore-stage. The ore sulfur may have been derived from evaporite rocks by thermochemical sulfate reduction (TSR) as the predominant mechanism for H2S generation. The Pb-isotopic compositions of the sulfide minerals from the Hoshbulak ores yield 206Pb/204Pb ratios from 17.847 to 18.173, 207Pb/204Pb ratios from 15.586 to 15.873 and 208Pb/204Pb ratios from 37.997 to 38.905, which indicate that the metals were sourced mainly from the Tan'gaitaer Formation. We conclude that the genesis of the Hoshbulak Mississippi Valley-type deposit was closely related to thrust faulting in the South Tianshan orogen of China.  相似文献   

2.
The Jiapigou gold belt (>150 t Au), one of the most important gold-producing districts in China, is located at the northeastern margin of the North China Craton. It is composed of 17 gold deposits with an average grade around 10 g/t Au. The deposits are hosted in Archean gneiss and TTG rocks, and are all in shear zones or fractures of varying orientations and magnitudes. The δ34S values of sulfide from ores are mainly between 2.7?‰ and 10?‰. The Pb isotope characteristics of ore sulfides are different from those of the Archean metamorphic rocks and Mesozoic granites and dikes, and indicate that they have different lead sources. The sulfur and lead isotope compositions imply that the ore-forming materials might originate from multiple, mainly deep sources. Fluid inclusions in pyrite have 3He/4He ratios of 0.6 to 2.5 Ra, whereas their 40Ar/36Ar ratios range from 1,444 to 9,805, indicating a dominantly mantle fluid with a negligible crustal component. δ18O values calculated from hydrothermal quartz are between ?0.2?‰ and +5.9?‰, and δD values of the fluids in the fluid inclusions in quartz are from ?70?‰ to ?96?‰. These ranges suggest dominantly magmatic water with a minor meteoric component. The noble gas isotopic data, along with the stable isotopic data, suggest that the ore-forming fluids have a dominantly mantle source with minor crustal addition.  相似文献   

3.
The Dabaoshan polymetallic deposit, located in the middle Nanling metallogenic belt, is an important and representative W-Mo-Cu-Pb-Zn deposit in the northern Guangdong. The deposit is characterized by a complex combination of ore-forming elements, containing 0.86 Mt Cu, 0.85 Mt Zn, 0.31 Mt Pb, 0.14 Mt WO3 at grades of 0.86%, 12%, 1.77% and 0.12%, respectively. Due to different mineral association and occurrence, mineralization at Dabaoshan can be defined as three types: porphyry W-Mo mineralization, skarn Mo-W mineralization and strata-bound sulfide mineralization. Pyrite from the three-mineralization types has different textures and element compositions. EMPA mapping analysis suggested that distribution of Co, Ni, and As is nearly homogeneous, whilst As in pyrite from the stratabound sulfides shows weak irregular zoning. LA-ICP-MS analyses of pyrite suggested that the three type have distinctive trace element characteristics even though the concentrations of the trace elements are relatively low. Cobalt, Ni, As and Se substitutes Fe and S in pyrite respectively while Cu, Zn, Sn Sb are mainly represented by chalcopyrite, sphalerite, cassiterite and stibnite inclusions enclosed in pyrite. Ni and Ag are rich in the pyrite from the stratabound mineralization. The results suggested that the trace element characteristic of pyrite can be used to: a) study the occurrence of trace element in pyrite; b) imply the chemical-physical conditions; c) trace the regional ore-forming substance and ore forming process. The stratabound mineralization is formed during the volcano eruption during the Devonian then and overprinted by the deep source material and multiple ore-forming fluids in the Yanshanian period. © 2018, Science Press. All right reserved.  相似文献   

4.
The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformably in low-grade metamorphic volcano-sedimentary rock series with well-developed Na-rich hydrothermal sedimentary rocks and typical hydrothermal sedimentary ore fabrics. Fluid inclusions and isotopic geochemistry studies suggest that cobalt mineralizing fluid is dominated by NaCl-H2O system, accompanied by NaCl-CO2-H2O-N2 system responsible for gold mineralization. Massive, banded and disseminated pyrite ores have similar compositions of He and Ar isotopes from the mineralizing fluid, with 3He/4He range between 0.10 to 0.31Ra (averaging 0.21Ra), and 40Ar/36Ar between 302 and 569 (averaging 373), which reflects that Co mineralizing fluids derived dominantly from meteoric water deeply circulating. δ34S values of pyrite approaches to zero (δ34S ranging from ?4.5‰ to +1.5‰, centering around ?1.8‰ to ?0.2‰), reflecting its deep source. Ore lead is characterized by distinctly high radiogenesis, with 206Pb/204Pb>19.279, 207Pb/204Pb>15.691 and 208Pb/204Pb>39.627, and its values show an increase trend from country rocks, regional Paleozoic volcanic rocks to ores. This may have suggested that high radiogentic ore Pb derived mainly from country rocks by leaching meteoric water-dominated hydrothermal fluid during its circulation at depth. Cobalt occurs mainly in sulfide phase (such as pyrite), but cobalt enrichment, and presence and increasing contents of Co-bearing minerals have a positive correlation with metamorphic degree. The Tuolugou deposit and other typical strata-bound Co-Cu-Au deposits have striking similarities in the geological features and metallogenic pattern of primary cobalt. All of them are syngenetic hydrothermal exhalative sedimentation in origin.  相似文献   

5.
The Zhaxikang Pb-Zn-Ag-Sb deposit, the largest polymetallic deposit known in the Himalayan Orogen of southern Tibet, is characterized by vein-type mineralization that hosts multiple mineral assemblages and complicated metal associations. The deposit consists of at least six steeply dipping veintype orebodies that are hosted by Early Jurassic black carbonaceous slates and are controlled by a Cenozoic N–S-striking normal fault system. This deposit records multiple stages of mineralization that include an early period(A) of massive coarse-grained galena–sphalerite deposition and a later period(B) of Sb-bearing vein-type mineralization. Period A is only associated with galena–sphalerite mineralization, whereas period B can be subdivided into ferrous rhodochrosite–sphalerite–pyrite, quartz–sulfosalt–sphalerite, calcite–pyrite, quartz–stibnite, and quartz-only stages of mineralization. The formation of brecciated galena and sphalerite ores during period A implies reworking of pre-existing Pb–Zn sulfides by Cenozoic tectonic deformation, whereas period B mineralization records extensive openspace filling during ore formation. Fluid inclusion microthermometric data indicate that both periods A and B were associated with low–medium temperature(187–267°C) and low salinity(4.00–10.18% wt. Na Cl equivalent) ore-forming fluids, although variations in the physical–chemical nature of the period B fluids suggest that this phase of mineralization was characterized by variable water/rock ratios. Microprobe analyses indicate that Fe concentrations in sphalerite decrease from period A to period B, and can be divided into three groups with Fe S concentrations of 8.999–9.577, 7.125–9.109, 5.438–1.460 mol.%. The concentrations of Zn, Sb, Pb, and Ag within orebodies in the study area are normally distributed in both lateral and vertical directions, and Pb, Sb, and/or Ag concentrations are positive correlation within the central part of these orebodies, but negatively correlate in the margins. Sulfide S isotope compositions are highly variable(4‰–13‰), varying from 4‰ to 11‰ in period A and 10‰ to 13‰ in period B. The Pb isotope within these samples is highly radiogenic and defines linear trends in 206 Pb/204 Pb vs. 207 Pb/204 Pb and 206 Pb/204 Pb vs. 208 Pb/204 Pb diagrams, respectively. The S and Pb isotopic characteristics indicate that the period B orebodies formed by mixing of Pb–Zn sulfides and regional Sbbearing fluids. These features are indicative of overprinting and remobilization of pre-existing Pb–Zn sulfides by Sb-bearing ore-forming fluids during a post-collisional period of the Himalayan Orogeny. The presence of similar ore types in the north Rhenish Massif that formed after the Variscan Orogeny suggests that Zhaxikang-style mineralization may be present in other orogenic belts, suggesting that this deposit may guide Pb–Zn exploration in these areas.  相似文献   

6.
The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian Tianzishan monzogranite. Orebodies in the Liziyuan gold field are controlled by the ductile-brittle shear zone, and by thrusting nappe faults related to the Indosinian orogeny. In detail, this paper analyzed the geological characteristics of the Liziyuan gold field, and the Pb isotopes of the Lziyuan host rocks, granitoids(Tianzishan monzogranite and Jiancaowan syenite porphyry), sulfides, and auriferous quartz veins by multiple-collector inductively coupled plasma mass spectrometry(MC-ICPMS). In addition, previous data on the sulfur, hydrogen, and oxygen isotopes were employed to discuss the possible sources of the ore-forming fluids and materials, and to further understand the tectonic setting of the Liziyuan gold deposit. The sulfides and their host rocks(Lziyuan Group), Tianzishan monzogranite and Jiancaowan syenite porphyry, and auriferous quartz veins have similar Pb isotopic compositions.Zartman's plumbotectonic model diagram shows that most of the data for the deposit fall near the orogenic Pb evolutionary curve or within the area between the orogenic and mantle Pb evolutionary curves. In the△β-△γ diagram, which genetically classifies the lead isotopes, most of the data fall within the range of the subduction-zone lead mixed with upper crust and mantle. This indicates that a complex source of the ore lead formed in the orogenic environment. The δ~(34)S values of the sulfides range from 3.90 to 8.50‰(average6.80‰), with a pronounced mode at 5.00‰-8.00‰. These values are consistent with that of orogenic gold deposits worldwide, indicating that the sulfur sourced mainly from reduced metamorphic fluids. The isotopic hydrogen and oxygen compositions support a predominantly metamorphic origin of the oreforming fluids, with possible mixing of minor magmatic fluids, but the late stage was dominated by meteoric water. The characteristics of the Liziyuan gold deposit formed in the Indosinian orogenic environment of the Qinling Orogen are consistent with those of orogenic gold deposits found worldwide.  相似文献   

7.
《Ore Geology Reviews》2003,22(1-2):61-90
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 °C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background.  相似文献   

8.
甲岗雪山钨钼矿床位于西藏自治区申扎县境内,是西藏首例云英岩型钨矿床,关于该矿床的研究对探讨区域成矿机制和指导找矿都具有重要意义.成矿作用与矿区内的二长花岗岩紧密相关,矿体主要产于岩体内部和紧邻岩体的围岩中.矿体的类型包括云英岩型和石英脉型,矿石多呈细脉状或者浸染状产在云英岩或云英岩化二长花岗岩体内部,少量呈大脉状产于围岩地层中.为了研究该矿床成矿流体及成矿物质的来源,挑选云英岩型矿体和石英脉型矿体中的黑钨矿、石英进行H、O同位素测试,挑选金属硫化物进行S、Pb同位素测试.结果显示,黑钨矿δ18OV-SMOW(‰)值集中在3.7~4.7;石英的δ18O水值为2.0‰~4.3‰,δD值为-131‰^-84‰,表明成矿流体主要来源于脱气后的岩浆水,可能混入了极少量大气降水.矿石硫化物δ34S的值为+2.2‰^+5.3‰,表明硫来自岩浆;硫化物的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb值分别为18.582 2~18.797 1、15.671 7~15.760 6、39.462 5~39.501 2,进一步表明成矿物质铅主要来源于中拉萨地体前寒武纪变质基底部分熔融产生的岩浆,可能有少量来自围岩地层.  相似文献   

9.
The Yuerya gold deposit in eastern Hebei Province, China, is located on the eastern margin of the North China Craton and is hosted by Mesozoic Yanshanian granitoid rocks and adjacent Mesoproterozoic Gaoyuzhuang Formation carbonates. The auriferous quartz veins in this deposit are dominated by pyrite, with subordinate sphalerite, chalcopyrite, and galena in a quartz-dominated gangue that also contains calcite, dolomite, barite, apatite, and fluorite. Gold is present as native gold and electrum, which are generally present as micron-size infillings in microfissures within pyrite and less commonly as tiny inclusions within pyrite, quartz, and tellurobismuthite. The pyrite in this deposit has high Co/Ni ratios and contains elevated concentrations of both of these elements, suggesting that the Yuerya gold deposit has a magmato-hydrothermal origin and that the ore-forming fluids that formed the deposit leached trace elements such as Co, Ni, As, and Au during passage through Archean metamorphic rocks, Mesoproterozoic carbonates, and the Yanshanian Yuerya granitoid. Pyrite in the study area has S/Se ratios and S isotopic compositions that suggest that the sulfur (and by inference the gold) within the deposit was sourced from magmato-hydrothermal fluids that were probably originally derived from Archean metamorphic rocks and Yanshanian granitoids. Tellurobismuthite in the study area is closely intergrown with gold and was the single telluride phase identified during this study. The fineness of gold associated with tellurobismuthite is greater than the fineness of gold associated with pyrite, although the fine particle size of the gold surrounded by tellurobismuthite means that the recovery of this gold is difficult, in turn meaning that the tellurobismuthite has little significance to the economics of the Yuerya gold deposit. Only trace amounts of sulfides are associated with the tellurobismuthite within the Yuerya gold deposit, suggesting that this mineral was deposited under conditions of low fS2 and/or high fTe2. In addition, the presence of tellurides within the Yuerya gold deposit reflects a genetic relationship between the deposit and magmatism. Quartz from mineralized veins in the study area has δ18O values of 11.2‰–12.9‰ and the fluids that formed these veins have δD values of − 78.3‰ to − 72.1‰. The δ34S values of pyrite within the deposit are rather restricted (2.3‰–3.5‰). These data, combined with the trace element geochemistry of sulfides within the deposit, suggest that the formation of the Yuerya gold deposit was closely related to both Archean metamorphic rocks and the Yanshanian Yuerya granitoid.  相似文献   

10.
Volcanic-hosted (Cu–Zn–Pb) massive sulfide mineralizations are described from four prospects in the Eastern Desert: Helgate, Maaqal, Derhib, and Abu Gurdi. Helgate and Maaqal prospects are hosted in island arc volcanics in a well-defined stratigraphic level. Massive sulfides form veins and lenses. Although these veins and lenses are locally deformed, sulfides from Helgate and Maaqal prospects show primary depositional features. They form layers and colloidal textures. Sphalerite, pyrite, chalcopyrite, and galena are the major sulfides. Gangue minerals are represented by chlorite, quartz, and calcite. The sulfide mineralizations at Helgate and Maaqal are Zn-dominated. Derhib and Abu Gurdi prospects occur as disseminations, small massive lenses, and veins along shear zones in talc tremolite rocks at the contact between metavolcanics and metasedimentary rocks. The host rocks at Derhib and Abu Gurdi are metamorphosed to lower amphibolite facies as revealed by silicate mineral assemblage and chemistry. Chalcopyrite, pyrite, sphalerite, and galena are the major sulfide minerals while pyrrhotite is less common. Recrystallization, retexturing and remobilization of sulfide minerals are reflecting postdepositional metamorphic and structural modifications. Electrum and Ag–Pb–Bi tellurides are common accessories. Gangue minerals comprise amphiboles of actinolite and actinolitic hornblende composition, talc, and chlorite. The ores at Derhib and Abu Gurdi are Cu–Zn and Zn-dominated, respectively. The distinct geological, petrographical, and geochemical differences between sulfide mineralizations at Helgate–Maaqal on one hand and Derhib and Abu Gurdi on the other hand suggest two genetic types of sulfide mineralizations; Helgate–Maaqal prospects (type 1) are similar to the Archean analogs from Canada (Noranda type), while Derhib and Abu Gurdi (type 2) show similarity to ophiolite-associated deposits similar to those described from Cyprus, Oman, and Finland. In genetic type 1, ore minerals were deposited on the seafloor; the role of postdepositional hydrothermal activity is limited. In genetic type 2, base metals were part of the ultramafic rocks and were later redistributed and mobilized during deformation to be deposited along shear zones. The dominance and diversity of tellurides in genetic type 2 highlight the role of metamorphic–hydrothermal fluids.  相似文献   

11.
查汗萨拉金矿是近年在新疆西天山新发现的一处金矿床,处于依连哈比尔尕构造带西端.矿体旱不规则脉状产于细品闪长岩构造破碎蚀变带及其接触带附近的上石炭统奇尔古斯套组蚀变围岩中,围岩蚀变较弱.矿石中硫化物主要为黄铁矿,并含少量磁黄铁矿、黄铜矿、方铅矿等.硫化物矿物呈自形粗晶或半自形结构,斑杂状分布在构造蚀变岩石中.金矿物以自然金和银金矿为主,还发现有硫(碲)银金矿和金铀化物等独特矿化线索,金矿物多赋存在黄铁矿中,以包体金、裂隙金和少量粒间金形式存在.金矿物形态以粒状和长角状为主,多为细、微细粒金(粒度<10 μm).矿石中矿物流体包裹体均一温度为220~340℃.热液脉三石矿物石英流体包裹体的δD为-92‰~-74‰,δ18Ov-SMOW为11.8‰~12.6‰,成矿流体显尔岩浆热液和变质建造水混合的特征.热液方解石脉的占δ13Cv-PDB为-8.92‰~-8.06‰,δ18Ov-SMOW为13.45‰~17.18‰,反映成矿流体中CO2主体米源于岩浆.硫化物206pb/204Pb为18.036~18.173,207pb/204pb为15.536~15.612,208pb/204pb为37.940~38.097,成矿金属具岩浆来源特征.矿石中硫化物δ34Sv-CDT为-9.8‰~-7.3‰,显示其可能与地层有关.查汗萨拉金矿为构造蚀变岩型中温岩浆热液矿床.小同于本区阿希金矿,是西天山金矿勘查中值得关注的新类型.  相似文献   

12.
位于右江盆地南部的滇东南底圩金矿床是近年来新发现的一处金矿床,为理清其成因,对不同类型矿石和赋矿围岩进行了主、微量元素及硫化物的硫同位素分析.结果表明,相较于赋矿围岩,矿石中明显富集Au、As、Sb、Hg、Tl、S、K、C元素,应为热液带入;而Si、Mg、Fe、Zr 和Th在矿石和围岩中变化不大,Fe主要来源于赋矿围岩...  相似文献   

13.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

14.
青海同仁双朋西金铜矿矿床地质特征及矿床成因   总被引:3,自引:0,他引:3  
在翔实的野外工作基础上,对青海省同仁县双朋西金铜矿床矿石与围岩的微量元素、稀土元素、流体包裹体和同位素地球化学特征展开了系统研究。研究结果表明,金矿石和花岗闪长岩的稀土元素配分模式具有相似性,均为轻稀土元素富集型,具负铕异常,基本上无铈异常,暗示它们之间存在成因联系;成矿流体为中高温、低盐度、中等密度、中等压力流体,且以含碳质为特征;铅、硫同位素结果均反映出成矿物质主要来源于深源。据此认为区内矿化是与中高温岩浆热液作用有关的矽卡岩型金铜矿化,属于印支-燕山期同一构造-岩浆作用的产物。  相似文献   

15.
河南瓦房铅锌矿床位于华北克拉通南缘熊耳山—外方山矿集区,矿体赋存于熊耳群鸡蛋坪组上段(Chj3)的地层中,矿石矿物有黄铁矿、方铅矿、闪锌矿和少量黄铜矿、赤铁矿、褐铁矿。该矿床热液成矿过程划分为3个阶段:石英-黄铁矿阶段(早阶段),石英-多金属阶段(中阶段),石英-碳酸盐脉阶段(晚阶段)。矿石中石英和方解石中捕获的原生包裹体类型有NaCl-H2O型两相、NaCl-CO2-H2O型三相和纯气相。气液两相包裹体3个阶段均一温度范围分别为150~260、150~230和110~160℃,3个阶段盐度(w(NaCl))平均值分别为12.22%、8.55%和6.29%。中阶段方解石的δ13 CVPDB平均值为-7.34‰,δ18 OSMOM平均值为15.56‰;晚阶段方解石的δ13 CVPDB平均值为-3.05‰,δ18 OSMOW平均值为2.21‰。早阶段硫化物的δ34S值为2.747‰~7.737‰,中阶段硫化物的δ34S值为-11.187‰~7.286‰。认为早中阶段成矿流体为变质流体,与中生代扬子克拉通和华北克拉通发生陆陆碰撞诱发中—新元古代时期的俯冲板片变质脱水有关,成矿晚阶段流体有大气降水的混入。硫同位素表明硫来源于中—新元古代的沉积地层,是海相硫酸盐的还原产物,在晚阶段,由于大气降水的混入导致δ34S出现负值。瓦房铅锌矿床地质特征、成矿流体特征与造山型矿床相似,因此,瓦房铅锌矿床属于造山型铅锌矿床。  相似文献   

16.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

17.
辽宁红透山铜-锌块状硫化物产在太古宙绿岩带中,矿床形成后经历了强烈的变形和变质,变质程度达高级角闪岩相。野外和显微镜研究表明,矿石在进变质过程中发生过强烈的机械再活化和重结晶,但各种进变质结构大部分已被变质峰期的全面重结晶所清除,目前保存着的结构主要是变质峰期和退变质过程的产物。退变质过程以黄铁矿变斑晶生长、矿石糜棱岩的形成、二次退火和化学再活化为特征。矿床中高度富集铜和金的矿石是韧性剪切形成的矿石糜棱岩受退变质流体叠加而成。磁黄铁矿主要是同生沉积后重结晶的产物,另有一部分由退变质热液形成,而黄铁矿变斑晶则有沉积一重结晶、磁黄铁矿退变质脱硫和热液叠加多种成因。世界各地块状硫化物矿床中的磁黄铁矿和黄铁矿各有三种成因类型。磁黄铁矿的类型有:同生沉积.变质重结晶、同生沉积黄铁矿变质和退变质热液充填或交代;黄铁矿的类型有:同生沉积-变质重结晶、磁黄铁矿退变质脱硫和退变质热液充填或交代。红透山矿区的退变质流体具有从早到晚氧逸度升高的趋势。  相似文献   

18.
The Barite Hill gold deposit, at the southwestern end of the Carolina slate belt in the southeastern United States, is one of four gold deposits in the region that have a combined yield of 110 metric tons of gold over the past 10 years. At Barite Hill, production has dominantly come from oxidized ores. Sulfur isotope data from hypogene portions of the Barite Hill gold deposit vary systematically with pyrite–barite associations and provide insights into both the pre-metamorphic Late Proterozoic hydrothermal and the Paleozoic regional metamorphic histories of the deposit. The δ34S values of massive barite cluster tightly between 25.0 and 28.0‰, which closely match the published values for Late Proterozoic seawater and thus support a seafloor hydrothermal origin. The δ34S values of massive sulfide range from 1.0 to 5.3‰ and fall within the range of values observed for modern and ancient seafloor hydrothermal sulfide deposits. In contrast, δ34S values for finer-grained, intergrown pyrite (5.1–6.8‰) and barite (21.0–23.9‰) are higher and lower than their massive counterparts, respectively. Calculated sulfur isotope temperatures for the latter barite–pyrite pairs (Δ=15.9–17.1‰) range from 332–355 °C and probably reflect post-depositional equilibration at greenschist-facies regional metamorphic conditions. Thus, pyrite and barite occurring separately from one another provide pre-metamorphic information about the hydrothermal origin of the deposit, whereas pyrite and barite occurring together equilibrated to record the metamorphic conditions. Preliminary fluid inclusion data from sphalerite are consistent with a modified seawater source for the mineralizing fluids, but data from quartz and barite may reflect later metamorphic and (or) more recent meteoric water input. Lead isotope values from pyrites range for 206Pb/204Pb from 18.005–18.294, for 207Pb/204Pb from 15.567–15.645, and for 208Pb/204Pb from 37.555–38.015. The data indicate derivation of the ore leads from the country rocks, which themselves show evidence for contributions from relatively unradiogenic, mantle-like lead, and more evolved or crustal lead. Geological relationships, and stable and radiogenic isotopic data, suggest that the Barite Hill gold deposit formed on the Late Proterozoic seafloor through exhalative hydrothermal processes similar to those that were responsible for the massive sulfide deposits of the Kuroko district, Japan. On the basis of similarities with other gold-rich massive sulfide deposits and modern seafloor hydrothermal systems, the gold at Barite Hill was probably introduced as an integral part of the formation of the massive sulfide deposit. Received: 17 August 1998 / Accepted: 12 October 2000  相似文献   

19.
The Lengshuikeng ore district in east-central China has an ore reserve of ~43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb?+?Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ~100–400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite–chalcopyrite–sphalerite, middle-stage acanthite–native silver–galena–sphalerite, and late-stage pyrite–quartz–calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from ?3.8 to +6.9‰ with an average of +2.0‰. The C–O isotope values of siderite, calcite, and dolomite range from ?7.2 to ?1.5‰ with an average of ?4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA–ICP–MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3?±?0.8 Ma considered as the emplacement age of the porphyry. Rb–Sr dating of sphalerite from the main ore stage yielded an age of 126.9?±?7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag–Pb–Zn deposit.  相似文献   

20.
The Huangshaping Pb–Zn–W–Mo polymetallic deposit, located in southern Hunan Province, China, is one of the largest deposits in the region and is unique for its metals combination of Pb–Zn–W–Mo and the occurrence of significant reserves of all these metals. The deposit contains disseminated scheelite and molybdenite within a skarn zone located between Jurassic granitoids and Carboniferous sedimentary carbonate, and sulfide ores located within distal carbonate-hosted stratiform orebodies. The metals and fluids that formed the W–Mo mineralization were derived from granitoids, as indicated by their close spatial and temporal relationships. However, the source of the Pb–Zn mineralization in this deposit remains controversial.Here, we present new sulfur, lead, and strontium isotope data of sulfide minerals (pyrrhotite, sphalerite, galena, and pyrite) from the Pb–Zn mineralization within the deposit, and these data are compared with those of granitoids and sedimentary carbonate in the Huangshaping deposit, thereby providing insights into the genesis of the Pb–Zn mineralization. These data indicate that the sulfide ores from deep levels in the Huangshaping deposit have lower and more consistent δ34S values (− 96 m level: + 4.4‰ to + 6.6‰, n = 13) than sulfides within the shallow part of the deposit (20 m level: + 8.3‰ to + 16.3‰, n = 19). The δ34S values of deep sulfides are compositionally similar to those of magmatic sulfur within southern Hunan Province, whereas the shallower sulfides most likely contain reduced sulfur derived from evaporite sediments. The sulfide ores in the Huangshaping deposit have initial 87Sr/86Sr ratios (0.707662–0.709846) that lie between the values of granitoids (0.709654–0.718271) and sedimentary carbonate (0.707484–0.708034) in the Huangshaping deposit, but the ratios decreased with time, indicating that the ore-forming fluids were a combination of magmatic and formation-derived fluids, with the influence of the latter increasing over time. The lead isotopic compositions of sulfide ores do not correlate with sulfide type and define a linear trend in a 207Pb/204Pb vs. 206Pb/204Pb diagram that is distinct from the composition of the disseminated pyrite within sedimentary carbonates and granitoids in the Huangshaping deposit, but is similar to the lead isotopic composition of sulfides within coeval skarn Pb–Zn deposits in southern Hunan Province. In addition, the sulfide ores have old signatures with relative high 207Pb/206Pb ratios, suggesting that the underlying Paleoproterozoic basement within southern Hunan Province may be the source of metals within the Huangshaping deposit.The isotope geochemistry of sulfide ores in the Huangshaping deposit shows a remarkable mixed source of sulfur and ore-forming fluids, and the metals were derived from the basement. These features are not found in representative skarn-type Pb–Zn mineralization located elsewhere. The ore-forming elements (S, Pb, and Zn) from the granitoids made an insignificant contribution to sulfide precipitation in this deposit. However, the emplacement of granitoids did provide large amounts of heat and fluids to the hydrothermal system in this area and extracted metals from the basement rocks, indicating that the Jurassic magmatism associated with the Huangshaping deposit was crucial to the Pb–Zn mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号