首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目前对珠江口盆地中生代以来的演化过程及其与沉积环境演变的响应关系尚缺乏系统性认识.基于珠江口盆地中-新生代岩浆活动、断陷结构样式及其改造、典型构造变形样式、沉积中心的转换等特征的对比分析,将盆地中-新生代的构造演化划分为4个阶段、7个期次:(1)中侏罗世-晚白垩世早期(~170~90 Ma)为古太平洋板块俯冲主控的陆缘岩浆弧-弧前盆地演化阶段;(2)晚白垩世-始新世中期(~90~43 Ma)为太平洋板块俯冲后撤背景下弧后周缘前陆/造山后塌陷-主动裂谷演化阶段;(3)始新世中期-中中新世(~43~10 Ma)为华南挤出-古南海俯冲拖曳主导的被动陆缘演化阶段;(4)晚中新世以来(~10~0 Ma)为菲律宾板块NWW向仰冲主导的挤压张扭演化阶段.~90 Ma、~43 Ma、~10 Ma分别实现了由安第斯型俯冲向西太平洋型俯冲、由主动裂谷向被动陆缘伸展、由被动陆缘伸展向挤压张扭的转换.在此过程中,伴随着古南海和南海的发育-消亡,新生代裂陷期沉积环境由东向西、由南向北逐渐海侵,裂后期由南向北阶段性差异沉降,由陆架浅水向陆坡深水转换,这使得珠一/三、珠二、珠四坳陷的石油地质条件具有显著的分带差异性...  相似文献   

2.
Although Jurassic-Early Cretaceous sedimentary systems were extensively developed on northeastern Gondwana, deciphering their paleogeography has been complicated by poor exposure and the lack of a robust chronostratigraphic framework. The southeastern margin of the Carpentaria Basin, northeastern Australia is one of the few regions where these sedimentary systems are extensively exposed. Employing a combination of facies analysis and new data from paleontology and detrital zircon geochronology, we present a temporally and environmentally refined paleogeographic framework for this region. A Late Jurassic, southeasterly directed marine incursion invaded northeastern Gondwana, extending inland across the Carpentaria Basin, as demonstrated by a thin (~30 m), marine influenced (fluvio-estuarine) stratigraphic succession capped by a sequence bounding ~30 myr paraconformity. The depositional hiatus marked the Late Jurassic-Early Cretaceous uplift of the Euroka Arch, with loss of sedimentary and fluvial connectivity between the Carpentaria Basin and adjoining Eromanga Basin. Subsequent deposition by low-accommodation fluvial systems resulted in a thin, fluviatile depositional package developing during the Early Cretaceous. Paleocurrent and provenance data indicate that the Middle to Late Jurassic (c. 170–160 Ma) fluvial systems predating the paraconformity extended from the Eromanga Basin to the south across the southeastern Carpentaria Basin, transporting sediment from distal sources in the Lachlan Orogen of southeastern Australia. Fluvial systems of the southeastern Carpentaria Basin post-dating the paraconformity and Euroka Arch uplift show a provenance shift to easterly sources in the Mossman Orogen and Kennedy Igneous Association. Previously unrecognised Jurassic-Early Cretaceous igneous activity provided a persistent source of sediment to the southeastern Carpentaria Basin succession due to reworking of air fall tuff from an active magmatic arc located on the continental margin of northeastern Gondwana.  相似文献   

3.
《地学前缘(英文版)》2020,11(4):1123-1131
Collision between the Indian and Eurasian plates formed the ~2500 km long Yarlung Zangbo Suture Zone and produced the Himalaya mountains and Tibetan plateau.Here we offer a new explanation for tectonic events leading to this collision:that the northward flight of India was caused by an Early Cretaceous episode of subduction initiation on the southern margin of Tibet.Compiled data for ophiolites along the Yarlung Zangbo Suture Zone show restricted ages between 120 Ma and 130 Ma,and their supra-subduction zone affinities are best explained by seafloor spreading in what became the forearc of a north-dipping subduction zone on the southern margin of Tibet.The subsequent evolution of this new subduction zone is revealed by integrating data for arcrelated igneous rocks of the Lhasa terrane and Xigaze forearc basin deposits.Strong slab pull from this new subduction zone triggered the rifting of India from East Gondwana in Early Cretaceous time and pulled it northward to collide with Tibet in Early Paleogene time.  相似文献   

4.
The Zealandia portion of the Pacific–Gondwana margin underwent widespread extension, fragmentation, separation and subsidence during the final stages in the breakup of Gondwana. Although these processes shaped the geology of New Zealand, their timing and the timing of subduction cessation in the region remain unclear. To investigate the timing of these processes, we used Lu–Hf garnet geochronology to date six samples of the Alpine Schist, which represents the metamorphic section of the former Zealandia margin. The garnet dates range from 97.3 ± 0.3 to 75.4 ± 1.3 Ma. Compositional zoning in garnet indicates that the spread in ages results from diachronous metamorphism in the upper plate at the Pacific–Gondwana margin, occurring concurrently with rifting of Zealandia from East Gondwana via opening of the Tasman Sea. Clear spatial trends in the timing of garnet growth throughout the Alpine Schist are absent, indicating that either regional age trends were offset by post‐metamorphic deformation, or that metamorphism did not result from a single regional heat source, and was instead driven by short‐duration, spatially dispersed processes such as episodic fluid‐fluxing or mechanical heating. Diachronous metamorphism of the Alpine Schist can be attributed to heat conduction from the rising upper mantle during widespread extension, progressive burial and heating of accretionary wedge sediments during ongoing horizontal shortening, or fluid‐fluxing sourced from a subducting and dehydrating Hikurangi Plateau. These results indicate that during separation of Zealandia from East Gondwana in the late Cretaceous, the crust at the Pacific–Gondwana margin remained hot, potentially facilitating the extensive thinning of the Zealandia lithosphere during this time.  相似文献   

5.
 Basins within the African sector of Gondwana contain a Late Palaeozoic to Early Mesozoic Gondwana sequence unconformably overlying Precambrian basement in the interior and mid-Palaeozoic strata along the palaeo-Pacific margin. Small sea-board Pacific basins form an exception in having a Carboniferous to Early Permian fill overlying Devonian metasediments and intrusives. The Late Palaeozoic geographic and tectonic changes in the region followed four well-defined consecutive events which can also be traced outside the study area. During the Late Devonian to Early Carboniferous period (up to 330 Ma) accretion of microplates along the Patagonian margin of Gondwana resulted in the evolution of the Pacific basins. Thermal uplift of the Gondwana crust and extensive erosion causing a break in the stratigraphic record characterised the period between 300 and 330 Ma. At the end of this period the Gondwana Ice Sheet was well established over the uplands. The period 260–300 Ma evidenced the release of the Gondwana heat and thermal subsidence caused widespread basin formation. Late Carboniferous transpressive strike-slip basins (e.g. Sierra Australes/Colorado, Karoo-Falklands, Ellsworth-Central Transantarctic Mountains) in which thick glacial deposits accumulated, formed inboard of the palaeo-Pacific margin. In the continental interior the formation of Zambesi-type rift and extensional strike-slip basins were controlled by large mega-shear systems, whereas rare intracratonic thermal subsidence basins formed locally. In the Late Permian the tectonic regime changed to compressional largely due to northwest-directed subduction along the palaeo-Pacific margin. The orogenic cycle between 240 and 260 Ma resulted in the formation of the Gondwana fold belt and overall north–south crustal shortening with strike-slip motions and regional uplift within the interior. The Gondwana fold belt developed along a probable weak crustal zone wedged in between the cratons and an overthickened marginal crustal belt subject to dextral transpressive motions. Associated with the orogenic cycle was the formation of mega-shear systems one of which (Falklands-East Africa-Tethys shear) split the supercontinent in the Permo-Triassic into a West and an East Gondwana. By a slight clockwise rotation of East Gondwana a supradetachment basin formed along the Tethyan margin and northward displacement of Madagascar, West Falkland and the Gondwana fold belt occurred relative to a southward motion of Africa. Received: 2 October 1995 / Accepted: 28 May 1996  相似文献   

6.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   

7.
孟凡超  刘嘉麒  崔岩  高金亮  刘祥  童英 《岩石学报》2014,30(12):3569-3586
东北地区中生代经历了蒙古-鄂霍茨克构造体系向太平洋构造体系的转换,形成了不同期次火山活动。本文归纳总结了露头区与覆盖区中生代火山岩的年代学、空间分布、岩石组合以及地球化学特征,揭示了两个构造域的时空分布范围。该区火山岩锆石U-Pb年龄统计结果表明中生代存在五期火山活动:早-中侏罗世(190~160Ma)、晚侏罗世(160~145Ma)、早白垩世早期(145~120Ma)、早白垩世晚期(120~100Ma)、晚白垩世早期(100~90Ma)。早-中侏罗世火山岩分布较少,火山岩仅分布在大兴安岭西部满洲里地区和东部张广才岭以及南侧辽宁北票-朝阳地区,火山岩属于高钾钙碱性系列,为蒙古-鄂霍茨克海闭合和法拉隆板块双俯冲作用的产物。晚侏罗世东北地区火山活动明显增强,主要分布在大兴安岭地区,张广才岭以及小兴安岭也有少量分布。西部大兴安岭地区以粗面安山岩、粗面岩为主,属于同碰撞造山成因,为蒙古-鄂霍茨克海闭合造山环境产物。东部以中酸性、酸性岩为主,为法拉隆板块背离欧亚大陆,岩石圈伸展引起的壳源物质熔融产物。早白垩世早期火山活动最为强烈,火山岩主要分布在大兴安岭地区。岩性以高钾钙碱性系列的粗面玄武安山岩、粗面安山岩、安山岩、粗面岩为主,为蒙古-鄂霍茨克海闭合造山后伸展环境产物。早白垩世晚期火山岩主要分布在松辽盆地内部。火山岩以中酸性岩为主,属于中钾-高钾钙碱性系列,为伊泽奈崎板块俯冲引起的弧后拉张,软流圈上涌导致年轻地壳熔融的产物。晚白垩世早期火山岩仅分布在小兴安岭及吉林、黑龙江省东部地区。火山岩为一套玄武岩、玄武安山岩、安山岩和英安岩组合,属于中钾钙碱性系列,是伊泽奈崎-库拉板块高角度俯冲的大陆边缘岩浆活动产物。东北地区中生代不同期次火山岩记录了蒙古-鄂霍茨克构造域向太平洋构造域转换过程及其时空影响范围。  相似文献   

8.
New 40Ar/39Ar ages of igneous rocks clarify the nature, timing and rates of movement of the oceanic Pacific, Phoenix, Farallon and Hikurangi plates against Gondwana and Zealandia in the Late Cretaceous. With some qualifications, cessation of spreading at the Osbourn Trough is dated c. 79 Ma, i.e. 30–20 m.y. later than 110–100 Ma Hikurangi Plateau-Gondwana collision. Oceanic crust of pre-84 Ma is confirmed to be present at the eastern end of the Chatham Rise, and a 99–78 Ma intraplate lava province erupted across juxtaposed Zealandia, Hikurangi Plateau and oceanic crust. We propose a new regional tectonic model in which a mechanically jammed Hikurangi Plateau resulted in the dynamic propagation of small, kinematically misaligned short-length 110–84 Ma spreading centres and long-offset fracture zones. It is only from c. 84 Ma that geometrically stable spreading became localized at what is now the Pacific-Antarctic Ridge, as Zealandia started to split from Gondwana.  相似文献   

9.
通过锆石-磷灰石裂变径迹年龄分布及其与粗碎屑沉积建造和地层不整合关系的综合分析,提供了鄂尔多斯盆地中新生代构造事件的年代学约束及其沉积响应特点。印支期构造事件主要发生在230~190Ma,包含215Ma和195Ma两个峰值年龄,在盆地西南缘发育晚三叠世粗碎屑类磨拉石建造及其与上覆地层的平行不整合。燕山期构造事件主要发生在燕山中晚期的150~85Ma,包含145Ma、120Ma和95Ma等3个峰值年龄,在盆地西南缘发育燕山中期的晚侏罗世和早白垩世的粗碎屑类磨拉石建造及其地层间的角度不整合。喜山期构造事件主要表现为盆地区域的多旋回构造隆升,至少包含55Ma、25Ma和5Ma等3个幕次的峰值年龄事件。其中,锆石和磷灰石叠合分布的峰值年龄(145Ma)和其相关的角度不整合、逆冲推覆和区域岩浆活动等,共同指示了鄂尔多斯盆地中新生代的一次关键构造变革事件。  相似文献   

10.
赵志刚  王鹏  祁鹏  郭瑞 《地球科学》2016,41(3):546-554
东海盆地处于西太平洋俯冲带前缘,是发育在华南克拉通基底之上的,以晚白垩世-新生代沉积为主的新生代盆地.东海盆地性质是在活动大陆边缘减薄陆壳之上的,由于洋-陆俯冲消减所引起的张裂、拉伸作用而形成的弧后裂谷型盆地,是西太平洋众多“沟-弧-盆”体系的一部分.东海盆地陆架外缘隆起控制着东海盆地的演化过程,该地质单元形成于晚白垩世,是陆缘隆起和增生楔的复合体,中新世后由于菲律宾海板块的活动而解体为现今的钓鱼岛隆褶带和琉球隆起.结合对陆架外缘隆起的研究后认为,东海盆地晚白垩世以来的演化历程具有3大构造阶段,即:第一阶段,古新世-中始新世西部坳陷形成发展期;第二阶段,中始新世-渐新世东部坳陷形成发展期,其中,中晚始新世太平洋板块的转向是东、西部坳陷构造迁移的分界点;第三阶段,中新世-全新世,东海盆地进入到菲律宾板块影响时期,原先的构造格局开始分解.   相似文献   

11.
赵越  高海龙  张拴宏  刘健 《地质学报》2022,96(5):1510-1523
一百年前中国地质学会成立,先驱者们竖立起中国地质科学的旗帜,也是中国科学的第一面旗帜,从此中国地质科学发展进入快车道。燕山运动、中国北方〖XCD.TIF;%70%70,JZ〗科研究,长身贝研究、北京猿人头盖骨的发现是中国地质科学快速进入国际赛道的标志。经历了近百年的研究,北京西山及北京北山、冀北和辽西典型地区积累的证据和资料表明,翁文灏提出的燕山运动A期(幕)发生在160±3 Ma前;晚侏罗世早—中期记录了以髫髻山组和蓝旗组为代表的区域强烈火山喷发和广泛的岩浆侵入(中间期/幕);晚侏罗世晚期区域发育逆冲推覆构造;燕山期构造发展至早白垩世早期135 Ma,冀北张家口组和辽西义县组之下的不整合为燕山运动B期结束的代表。燕山运动是东亚大陆构造体制从古特提斯及古亚洲洋构造域转变为环太平洋活动大陆边缘构造域的产物。这是中国东部和东亚区域中生代独特的重大的地质构造事件。  相似文献   

12.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

13.
西藏羌塘盆地白垩纪中期构造事件的磷灰石裂变径迹证据   总被引:3,自引:1,他引:3  
王立成  魏玉帅 《岩石学报》2013,29(3):1039-1047
拉萨与羌塘地块于白垩纪中期的碰撞造山对羌塘原型盆地的热体制和构造演化有着重要影响.运用磷灰石裂变径迹方法,对羌塘盆地隆鄂尼夏里组和托纳木雪山组砂岩分析表明,裂变径迹年龄集中在120~ 80Ma之间,表明在白垩纪中期,羌塘盆地普遍发生了一次构造抬升事件,该期构造事件的年龄与盆地内早白垩世的岩浆热事件、主要构造变形作用发生在晚白垩世以及雪山组和阿布山组角度不整合的时代(125~75Ma)较一致,是拉萨与羌塘地块碰撞造山事件的记录.热历史模拟表明,白垩纪中期构造事件对羌塘盆地南部和北部的热演化历史有着差异影响,羌塘盆地南部降温速率相对不大,抬升剥蚀厚度约1500m,而北部古地温迅速降温到近地表温度,抬升剥蚀厚度近4000m.这种差异抬升剥蚀可能与班公湖-怒江洋壳向南俯冲使得因拉萨地块构造负载而导致羌塘地块的挠曲有关.  相似文献   

14.
胶东中生代动力学演化及主要金属矿床成矿系列   总被引:8,自引:4,他引:4  
胶东处于古特提斯和太平洋两大成矿域的结合部位,经历了强烈的中生代构造岩浆活动和重要金属矿床成矿作用。本文通过对中生代各期岩浆活动背景、典型矿床成因类型的分析判别,结合区域地质构造特征,总结提出胶东中生代成岩成矿动力学演化主要受扬子板块、华北板块碰撞造山作用和古太平洋板块俯冲作用影响,并可划分为晚三叠世陆陆碰撞造山期,中侏罗世被动陆缘向活动陆缘转换、地壳增生期,早白垩世早期地壳增生向垮塌转换期,早白垩世中期岩石圈大规模拆沉、壳幔强烈作用期,早白垩世晚期陆缘弧俯冲作用期,和晚白垩世早期弧后岩石圈强烈伸展期六个演化阶段,分别对应着区域~205Ma、160~155Ma、135~125Ma、125~115Ma、115~100Ma、100~90Ma等六期主要金及多金属成矿作用;形成的贵金属及有色金属矿床具有较为明显的时空分布规律,大致包括6个矿床成矿系列,分为9个亚系列和16个矿床式。自西向东,可划分出莱州西部、招远-平度、栖霞-蓬莱-福山、胶莱盆地东北缘、牟平-乳山、文登-威海、荣成等7个贵金属、有色金属成矿区(带)。区内造山型金矿仍是找矿的重点,斑岩型有色金属矿床可望取得突破,中低温热液脉型多金属矿床应受到充分重视。  相似文献   

15.
华南陆缘在新生代期间经历了千米量级的上覆盖层剥蚀和山脉隆升;同时,其东侧的东海陆架盆地经历多次构造应力场的反转并发育多期反转构造。东海陆架盆地内的构造反转与华南陆缘隆升的发生时间和触发机制是否一致有待研究。为此,本文对浙江地区的岩石样品进行磷灰石裂变径迹测试和热演化史反演分析其隆升历史,并通过地震剖面分析东海陆架盆地的反转时间及其反转所导致的地层剥蚀量;最后,将二者进行对比分析并研究其动力学机制。结果发现,华南东部陆缘地区至少存在晚始新世(34. 5~33. 5Ma)、中中新世(16~11. 5Ma)、上新世以来(5~0Ma)三期明显的快速隆升事件,三期隆升导致的地层剥蚀量分别为227m、593m和865m;东海陆架盆地经历了古新世末-始新世初(~56Ma)、始新世末-渐新世初(~32Ma)和晚中新世(~10Ma)三期构造反转,三期反转导致的局部地层最大剥蚀量分别可达1200m、1300m和2000m。在时间上,东海陆架盆地的始新世末-渐新世初(~32Ma)和晚中新世(~10Ma)的构造反转分别滞后于浙江的晚始新世(34. 5~33. 5Ma)和中中新世(16~11. 5Ma)的隆升时间,说明这两期挤压-剥蚀事件分别具有自西向东的迁移性,即印度-欧亚板块碰撞的远程效应可能是导致该迁移特征的原因;在强度上,东海陆架盆地的反转剥蚀量大于浙江境内的地层隆升量、挤压强度东强西弱,中新世晚期菲律宾海板块向西俯冲导致冲绳海槽弧后伸展产生向西的挤压力、这种挤压应力向陆内传递且强度变弱可能是导致该特征的原因。  相似文献   

16.
佳木斯地块位于中亚造山带东段,是我国东北地区一个重要的大地构造单元,古生代以来经历了复杂的多构造体系叠合的演化过程。本文在总结近二十年已报导的相关研究成果基础上,结合笔者近年工作,探讨了佳木斯地块的基底属性和来源,重塑了佳木斯地块西缘碰撞拼贴,以及东缘俯冲-增生的构造演化过程。研究表明,佳木斯地块具有亲冈瓦纳大陆的构造属性,裂离后经历了长距离的北漂。与松辽地块先后两次拼合,首次发生于中志留世(~425Ma),在晚二叠世前后(~250Ma)沿原缝合带位置发生裂解,拉张出新的有限洋盆(牡丹江洋),并于侏罗纪(185~145Ma)与松辽地块沿牡丹江-依兰构造带再次碰撞拼贴,形成了高压变质的黑龙江增生杂岩带。而佳木斯地块东缘受晚石炭世-晚三叠世(305~250Ma)泛大洋的俯冲-增生事件影响,形成了跃进山增生杂岩,随后于中侏罗世-早白垩世(165~128Ma)在古太平洋板块的西向俯冲作用下,形成了饶河增生杂岩。因此,佳木斯地块的构造演化既涉及了晚古生代古亚洲洋构造域的消亡,又经历了中生代古太平洋构造域的叠加与改造,而黑龙江杂岩的形成标志着古太平洋构造体制与古亚洲洋构造体制的转换始于晚三叠世(~210Ma)。  相似文献   

17.
南秦岭东河群碎屑锆石U-Pb年龄及其板块构造意义   总被引:2,自引:0,他引:2  
南秦岭微陆块是秦岭造山带的重要构造单元,其早白垩世沉积物是研究物源区及南秦岭微陆块构造演化的理想对象.南秦岭微陆块南缘观音坝盆地早白垩世砂砾岩中的碎屑锆石LA-ICP-MS U-Pb年龄给出了5个年龄峰,范围分别是2600~2300Ma、2050~1800Ma、1200~750Ma、650~400Ma和350~200Ma,对应于Kenor、Columbia、Rodinia、Gondwana和Pangaea等5次超大陆事件.碎屑锆石源区复杂,但主要源自华北克拉通和北秦岭增生带,表明晚古生代南秦岭微陆块是秦岭-华北联合大陆板块的一部分,而非独立的微陆块.最年轻的锆石年龄峰给出了勉略洋向秦岭-华北大陆俯冲的时限,即350~ 200Ma;扬子与秦岭-华北联合大陆板块的碰撞造山作用始于三叠纪-侏罗纪之交,强烈的挤压造山作用发生在侏罗纪,而非三叠纪或更早.  相似文献   

18.
After a prolonged period of convergent margin tectonics in the Late Paleozoic and Mesozoic, resulting in terrane accretion, uplift and erosion of the New Zealand segment of Gondwana, the region saw a rapid change to extensional tectonics in mid-Cretaceous times. The change in regime is commonly marked by a major angular unconformity that separates the older, often strongly-deformed subduction-related ‘basement’ rocks from the younger, less-deformed ‘cover’ strata. The youngest ‘basement’ strata locally contain Albian fossils, and the youngest associated zircons have been radiometrically dated at ca. 100 Ma. In general the oldest strata overlying the unconformity contain fossils of similar Albian age, and the oldest radiometric dates also give similar dates of ca. 100 Ma, indicating a very rapid transition between the two tectonic regimes.The onset of extension resulted in the widespread development of grabens and half grabens, associated in the northwest of the South Island with a metamorphic core complex. In the west and south, on the thicker and more buoyant crust of most of the South Island, the new basins were infilled with mainly non-marine deposits. Non-marine graben infill consists of locally-derived breccia deposited as talus or debris flows on alluvial fans, passing directly as fan deltas or via fluvial deposits into lacustrine deposits. Active faulting continued in some areas until the initiation of sea floor spreading in Santonian times. Post-subduction strata on the thinner continental crust of the northeastern South Island and eastern North Island (East Coast Basin) were mainly marine. Initial sedimentary deposits in the west of the basin, reflecting extensional tectonism, consist of coarse-grained debris-flow deposits or olistostromes, generally fining upwards as tectonic activity waned: those in the east, including allochthonous sediments derived from the northeast, are dominated by turbidites. Early Cenomanian (ca. 96–98 Ma) injection of intraplate alkaline igneous rocks in central New Zealand caused updoming, resulting in shallowing and local uplift of the basin floor above sea level. A long (ca. 10 Ma) period of slow subsidence and transgressive marine sedimentation interrupted by episodic relative sea level changes followed.This pattern changed in the Late Coniacian (ca. 87–86 Ma), with a sudden influx of coarse, transgressive sands in eastern New Zealand. This was immediately preceded in parts of the region by uplift and erosion, probably driven by convective upwelling of the mantle just prior to sea-floor spreading, resulting in a ‘break-up’ unconformity. In the Late Santonian (ca. 85–84 Ma), development of a new, diachronous, widespread low-relief erosion surface, overlain by fine-grained deposits accompanying a rapid rise in relative sea level, coincided with the beginning of sea-floor spreading, rapid passive margin subsidence, and final separation of New Zealand from Gondwana.  相似文献   

19.
王枫  许文良  葛文春  杨浩  裴福萍  吴韦 《岩石学报》2016,32(4):1129-1140
敦化-密山断裂带是郯庐断裂北段的重要分支之一,其大规模左行走滑发生的时限以及平移距离一直存在较大争议。本文系统地总结了松嫩-张广才岭地块东缘、佳木斯地块以及兴凯地块之上古生代-中生代火成岩的锆石U-Pb年代学资料,结合其空间分布特征,对敦化-密山断裂带的平移时限及距离提供了制约。研究表明,松嫩-张广才岭地块东缘与兴凯地块在古生代-中生代期间具有类似的岩浆活动历史,两个地块之上该时期的岩浆作用可以划分为8个主要期次:中-晚寒武世(ca.500~516Ma)、早奥陶世(ca.480~486Ma)、晚奥陶世(ca.450~456Ma)、中志留世(ca.426~430Ma)、早二叠世(ca.285~292Ma)、晚二叠世(ca.255~260Ma)、晚三叠世(ca.202~210Ma)和早侏罗世(ca.185~186Ma)。相比之下,佳木斯地块中的古生代-中生代早期岩浆事件则集中在晚寒武世(~492Ma)、晚泥盆世(~388Ma)、早二叠世(~288Ma)、晚二叠世(~259Ma)和早侏罗世(~176Ma),而晚奥陶世-志留纪和晚三叠世的岩浆活动在佳木斯地块未见报道。早白垩世晚期(ca.105~110Ma)和晚白垩世(ca.90~94Ma)的岩浆活动在三个地块均存在。上述结果表明兴凯地块东缘与松嫩-张广才岭地块东缘在早古生代经历了共同的地质演化历史,而中生代早期,兴凯地块西缘与松嫩-张广才岭地块东缘经历了同样的岩浆作用历史。上述结果暗示,敦化-密山断裂可能经历了至少两次平移,分别发生在中-晚二叠世-早三叠世和中-晚侏罗世-早白垩世,推测其总的平移距离约400km。结合研究区中生代期间的构造演化历史,敦化-密山断裂中生代的左行平移应与中-晚侏罗世-早白垩世期间古太平洋板块(Izanagi板块)的斜向俯冲相联系。  相似文献   

20.
Jurassic Tectonics of North China: A Synthetic View   总被引:21,自引:1,他引:20  
This paper gives a synthetic view on the Jurassic tectonics of North China, with an attempt to propose a framework for the stepwise tectonic evolution history. Jurassic sedimentation, deformation and magmatism in North China have been divided into three stages. The earliest Jurassic is marked by a period of magmatism quiescence (in 205-190 Ma) and regional uplift, which are considered to be the continuation of the “Indosinian movement” characterized by continent-continent collision between the North and South China blocks. The Early to Middle Jurassic (in 190-170 Ma) was predominated by weak lithospheric extension expressed by mantle-derived plutonism and volcanism along the Yanshan belt and alongside the Tan-Lu fault zone, normal faulting and graben formation along the Yinshan- Yanshan tectonic belt, depression and resuming of coal-bearing sedimentation in vast regions of the North China block (NCB). The Middle to Late Jurassic stage started at 165y.5 Ma and ended up before 136 Ma; it was dominated by intensive intraplate deformation resulting from multi-directional compressions. Two major deformation events have been identified. One is marked by stratigraphic unconformity beneath the thick Upper Jurassic molasic series in the foreland zones of the western Ordos thrust-fold belt and along the Yinshan-Yanshan belt; it was predated 160 Ma. The other one is indicated by stratigraphic unconformity at the base of the Lower Cretaceous and predated 135 Ma. During this last stage, two latitudinal tectonic belts, the Yinshan-Yanshan belt in the north and the Qinling-Dabie belt in the south, and the western margin of the Ordos basin were all activated by thrusting; the NCB itself was deformed by the NE to NNE-trending structural system involving thrusting, associated folding and sinistral strike-slip faulting, which were spatially partitioned. Foliated S-type granitic plutons aged 160-150 Ma were massively emplaced in the Jiao-Liao massif east of the Tan-Lu fault zone and indicate important crustal thicken  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号