首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   

2.
During star formation, both infall and outflows are present around protostellar cores. Here we show solutions of a self-similar model that study the two flows with only one set of equations. We focus here on the effects of magnetic field and dust on solutions. Unmagnetized solutions have also been found. This shows that magnetic field is not the main driving mechanism of the circulation process. We have found that a reduction of magnetic field produces denser, slower and narrower outflows. When the opacity is less dominated by dust, density increases in the equatorial region, allowing larger accretion rates to occur. The comprehension of massive star formation could be related to this latter effect.  相似文献   

3.
4.
We present Hα spectropolarimetry observations of a sample of 10 bright T Tauri stars, supplemented with new Herbig Ae/Be star data. A change in the linear polarization across Hα is detected in most of the T Tauri (9/10) and Herbig Ae (9/11) objects, which we interpret in terms of a compact source of line photons that is scattered off a rotating accretion disc. We find consistency between the position angle (PA) of the polarization and those of imaged disc PAs from infrared and millimetre imaging and interferometry studies, probing much larger scales. For the Herbig Ae stars AB Aur, MWC 480 and CQ Tau, we find the polarization PA to be perpendicular to the imaged disc, which is expected for single scattering. On the other hand, the polarization PA aligns with the outer disc PA for the T Tauri stars DR Tau and SU Aur and FU Ori, conforming to the case of multiple scattering. This difference can be explained if the inner discs of Herbig Ae stars are optically thin, whilst those around our T Tauri stars and FU Ori are optically thick. Furthermore, we develop a novel technique that combines known inclination angles and our recent Monte Carlo models to constrain the inner rim sizes of SU Aur, GW Ori, AB Aur and CQ Tau. Finally, we consider the connection of the inner disc structure with the orientation of the magnetic field in the foreground interstellar medium: for FU Ori and DR Tau, we infer an alignment of the stellar axis and the larger magnetic field direction.  相似文献   

5.
The structure of accretion discs around magnetic T Tauri stars is calculated numerically using a particle hydrodynamical code, in which magnetic interaction is included in the framework of King's diamagnetic blob accretion model. Setting up the calculation so as to simulate the density structure of a quasi-steady disc in the equatorial plane of a T Tauri star, we find that the central star's magnetic field typically produces a central hole in the disc and spreads out the surface density distribution. We argue that this result suggets a promising mechanism for explaining the unusual flatness (IR excess) of T Tauri accretion disc spectra.  相似文献   

6.
Results of simultaneous spectral and photometric monitoring of the Ae Herbig star WW Vul in the neighborhoods of the Ha line and the sodium NaI D resonance doublet are reported. It is shown that the spectral variability of the star is caused mainly by the anisotropic disk wind, whose high velocity component forms in the inner region of the accretion disk. The circumstellar gas in footpoint of the wind shows the variability of the density and velocity, that is in good agreement with the results of modeling of an accretion and outflows around young stars controlled by the stellar and/or disk magnetic field. An analysis of the variability of the parameters of the Ha emission line also showed that the density of the gas in the inner region of the accretion disk varies over a time scale exceeding 10 years. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 171–185 (May 2006).  相似文献   

7.
We calculate the structure of a force-free magnetosphere which is assumed to corotate with a central star and which interacts with an embedded differentially rotating accretion disc. The magnetic and rotation axes are aligned, and the stellar field is assumed to be a dipole. We concentrate on the case when the amount of field line twisting through the disc–magnetosphere interaction is large , and consider different outer boundary conditions. In general the field line twisting produces field line inflation (e.g. Bardou & Heyvaerts), and in some cases with large twisting many field lines can become open. We calculate the spin-down torque acting between the star and the disc, and we find that it decreases significantly for cases with large field line twisting. This suggests that the oscillating torques observed for some accreting neutron stars could be caused by the magnetosphere varying between states with low and high field line inflation. Calculations of the spin evolution of T Tauri stars may also have to be revised in the light of the significant effect that field line twisting has on the magnetic torque resulting from star–disc interactions.  相似文献   

8.
The results of a non-LTE analysis of a number of spectral lines formed in the accreting envelopes of UX Ori stars are given. The accretion rate is estimated from an analysis of the first three lines of the Balmer series: M a = 10?8 ?10?9 M The gas temperature in this region is about 10,000 K. In the immediate vicinity of the star there is a hotter region, with T > 15,000 K, in which the 5876 Å line of neutral helium, observed in the spectra of these stars, is formed. The region of formation of this line has a small geometrical thickness, covers a small fraction of the star’s visible disk, and evidently consists of the site of contact of the accreting gas with the stellar surface. The low gas rotation rates in this region (150–200 km/sec) may mean that rapid rotation of the accreting gas is damped by the star’s magnetic field, which is strong enough to affect the gas stream. We estimate the magnetic field strength in this region to be about 150 G.  相似文献   

9.
We have carried out global three‐dimensional magnetohydrodynamic simulations of the star‐disc interaction region around a young solar‐type star. The magnetic field is generated and maintained by dynamos in the star as well as in the disc. The developing mass flows possess non‐periodic time‐variable azimuthal structure and are controlled by the nonaxisymmetric magnetic fields. Since the stellar field drives a strong stellar wind, accretion is anti‐correlated with the stellar field strength and disc matter is spiraling onto the star at low latitudes, both contrary to the generally assumed accretion picture. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present a survey of accretion disc models around compact objects — in particular the accretion onto white dwarfs, neutron stars, and black holes. We discuss both the thin disc as well as thick disc models and also the feaibility where either of these can be applied in the astrophysical systems. The crucial role of magnetic field in facilitating the formation of accretion discs in neutron stars is indicated. The prime significance of accretion discs in the generation of soft and hard X-rays is also discussed. Thick disc models are found to explain the observations of active galactic nuclei and also collimated and persistent jets in some of the radio sources.  相似文献   

11.
We present Hα, [N  II ]6583 and 6-cm continuum images of the emission line nebula K 3-35. The optical images reveal an extended nebula (size ≃ 11 × 9 arcsec2 in [N  II ]) in which most of the emission originates in a very narrow (width 0.7–1.3 arcsec) S-shaped region which extends almost all along the nebula (≃ 7 arcsec). The 6-cm continuum emission also arises in this narrow region, which is characterized by an exceedingly high point-symmetry and systematic and continuous changes of the orientation with respect to the nebular centre. The properties of the narrow region suggest that it represents a system of precessing bipolar jet-like components. Two low-excitation, compact bipolar knots near the tips of the jet-like components are observed in the deduced [N  II ]/Hα image ratio. These knots may be generated by the interaction of the collimated outflows with surrounding material. A comparison of the optical and radio images shows the existence of differential extinction within the nebula. Maximum extinction is observed in a disc-like region which traces the equator of the elliptical shell previously observed at 20-cm continuum. All available data strongly suggest that K 3-35 is a very young planetary nebula in which we could be observing the first stages of the formation of collimated outflows and point-symmetric structures typically observed in planetary nebulae. The properties of the jet-like components in K 3-35 are in good agreement with models of binary central stars in which highly collimated outflows originate either from a precessing accretion disc or via magnetic collimation in a precessing star.  相似文献   

12.
We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty “dead” zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-in field in this region. Magnetic field is quasi-azimuthal close to the outer boundary of accretion disks for standard ionization rates and dust grain size a d=0.1 μm. In the case of large dust grains (a d>0.1 μm) or enhanced ionization rates, the magnetic field is quasi-radial in the outer regions. It is shown that the inner boundary of dusty “dead” zone is placed at r=(0.1–0.6) AU for accretion disks of stars with M=(0.5–2)?M . Outer boundary of “dead” zone is placed at r=(3–21) AU and it is determined by magnetic ambipolar diffusion. Mass of solid material in the “dead” zone is more than 3?M for stars with M≥1?M .  相似文献   

13.
We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle , the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.  相似文献   

14.
We present measurements of magnetic field strength and geometry on the surfaces of T Tauri stars (TTS) with and without circumstellar disks. We use these measurements to argue that magnetospheric accretion models should not assume that a fixed fraction of the stellar surface contains magnetic field lines that couple with the disk. We predict the fractional area of accretion footpoints, using magnetospheric accretion models and assuming field strength is roughly constant for all TTS. Analysis of Zeeman broadened infrared line profiles shows that individual TTS each have a distribution of surface magnetic field strengths extending up to 6 kG. Averaging over this distribution yields mean magnetic field strengths of 1-3 kG for all TTS, regardless of whether the star is surrounded by a disk. These strong magnetic fields suggest that magnetic pressure dominates gas pressure in TTS photospheres, indicating the need for new model atmospheres. The He I 5876 Å emission line in TTS can be strongly polarized, so that magnetic field lines at the footpoints of accretion have uniform polarity. The circular polarization signal appears to be rotationally modulated, implying that accretion and perhaps the magnetosphere are not axisymmetric. Time series spectropolarimetry is fitted reasonably well by a simple model with one magnetic spot on the surface of a rotating star. On the other hand, spectropolarimetry of photospheric absorption lines rules out a global dipolar field at the stellar surface for at least some TTS.  相似文献   

15.
Energetic outflows provide a dramatic accompaniment to accretion disks in all stages of star formation. The low extinction toward Classical T Tauri stars offers an opportunity to probe the star-disk interface region to search for the launch site and acceleration region of accretion-driven winds. This search is complicated by the fact that the dominant sources of emission in the optical and ultraviolet are the funnel flows and accretion shocks associated with magnetospheric accretion. Thus the quest for inner wind diagnostics requires disentangling accretion and outflow processes from the same line profile. We discuss two tracers of a high velocity inner wind in stars with high disk accretion rates. One, a hot component, is traced by helium emission and must arise very close to the star. A second, cooler component, is traced by blueshifted absorption in strong resonance lines and arises further from the star, but still within about ten stellar radii. We present evidence that the character of both magnetospheric accretion and the inner wind may differ among stars with high and low disk accretion rates.  相似文献   

16.
Many compact radio sources like quasars, blazars, radio galaxies, and micro-quasars emit circular polarisation (CP) with surprising temporal persistent handedness. We propose that the CP is caused by Faraday conversion (FC) of linear polarisation (LP) synchrotron light which propagates along a line-of-sight (LOS) through helical magnetic fields. Jet outflows from radio galaxies should have the required magnetic helicity in the emission region due to the magnetic torque of the accretion disc. Also advection dominated accretion flow (ADAF)should contain magnetic fields with the same helicity. However, a jetregion seems to be the more plausible origin of CP. The proposed scenario requires Faraday rotation (FR) to be insignificant in the emission region. The proposed mechanism works in electron-positron(e±) as well as electron-proton (e/p) plasma. In the latter case, the emission region should consist of individual flux tubes with independent polarities in order to suppress too strong FR– as it was already proposed for FR based CP generation models. The predominant CP is expected to mostly counter-rotate (rotation is measured here in sky-projection) with respect to the central engine in all cases (jet or ADAF, e± or e/p plasma) and therefore allows to measure the sense of rotation of quasar engines. The engine of SgrA* is expected – in this scenario – to rotate clockwise and therefore counter-Galactic, as do the young hot stars in its vicinity, which are thought to feed SgrA* by their winds. Generally, sources with Stokes-V<0 (V>0) are expected to rotate clockwise(counter-clockwise).  相似文献   

17.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

18.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

19.
Recent measurements of the surface magnetic fields of classical T Tauri stars (CTTSs) and magnetic cataclysmic variables show that their magnetic fields have a complex structure. Investigation of accretion onto such stars requires global three-dimensional (3D) magnetohydrodynamic (MHD) simulations, where the complexity of simulations strongly increases with each higher-order multipole. Previously, we were able to model disc accretion onto stars with magnetic fields described by a superposition of dipole and quadrupole moments. However, in some stars, like CTTS V2129 Oph and BP Tau, the octupolar component is significant and it was necessary to include the next octupolar component. Here, we show results of global 3D MHD simulations of accretion onto stars with superposition of the dipole and octupole fields, where we vary the ratio between components. Simulations show that if octupolar field strongly dominates at the disc-magnetosphere boundary, then matter flows into the ring-like octupolar poles, forming ring-shape spots at the surface of the star above and below equator. The light-curves are complex and may have two peaks per period. In case where the dipole field dominates, matter accretes in two ordered funnel streams towards poles, however the polar spots are meridionally-elongated due to the action of the octupolar component. In the case when the fields are of similar strengths, both, polar and belt-like spots are present. In many cases the light-curves show the evidence of complex fields, excluding the cases of small inclinations angles, where sinusoidal light-curve is observed and ‘hides’ the information about the field complexity.We also propose new mechanisms of phase shift in stars with complex magnetic fields. We suggest that the phase shifts can be connected with: (1) temporal variation of the star’s intrinsic magnetic field and subsequent redistribution of main magnetic poles; (2) variation of the accretion rate, which causes the disc to interact with the magnetic fields associated with different magnetic moments. We use our model to demonstrate these phase shift mechanisms, and we discuss possible applications of these mechanisms to accreting millisecond pulsars and young stars.  相似文献   

20.
We consider the problem of the distortion of the photospheric spectrum for a young star as its light is scattered in the inner accretion disk in the dust grain evaporation region. In T Tauri stars, this region is at a distance of the order of several stellar radii and is involved in the large-scale motions of matter with velocities of ~100 km s?1 or higher. The light scattering in such a medium causes the frequency of the scattered radiation to be shifted due to the Doppler effect. We analyze the influence of this effect on the absorption line profiles in the spectra of T Tauri stars using classical results of the theory of radiative transfer. We consider two models of a scattering medium: (i) a homogeneous cylindrical surface and (ii) a cylindrical surface with an azimuth-dependent height (such conditions take place during the accretion of matter onto a star with an oblique magnetic dipole). We show that in the first case, the scattering of the photospheric radiation causes the absorption lines to broaden. If the motion of the circumstellar matter in the dust evaporation region is characterized by two velocity components, then the line profile of the scattered radiation is asymmetric, with the pattern of the asymmetry depending on the direction of the radial velocity. In the second case, the scattered radiation can cause periodic shifts of the absorption line centroid, which can be perceived by an observer as periodic radial-velocity variations in the star. We suggest that precisely this effect is responsible for the low-amplitude radial-velocity variations with periods close to the stellar rotation periods that have recently been found in some of the T Tauri stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号