首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.  相似文献   

2.
In this paper, we report new whole-rock geochemical and zircon U–Pb data for monzogranites in the NE Xing’an block. These data constrained the petrogenesis of C type (high Sr/Y) adakitic rocks and showed the spatial extent of the influence of the Mongol-Okhostsk ocean tectonic regime and the collision between the Jiamusi Massif and Songliao Terrane. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicated that the monzogranites in the studied area were emplaced in the Early Jurassic (~180 Ma). These rocks were characterized by unusally high SiO2 (≥67.49), and Sr (461–759 ppm), but strikingly low Y (4.63–8.06 ppm) and HREE (∑HREE = 3.83–6.49 ppm, Yb = 0.5–0.77 ppm) contents, with therefore high Sr/Y (67.2–119) and (La/Yb)N (29.7–41.5) ratios, showing the geochemical characteristics of C type adakitic granite. The data displayed negligible Eu anomalies (Eu/Eu* = 0.77–1.08), LREE-enriched and pronounced negative Nb and Ta anomalies. The C-type adakites in the studied area were most likely derived from the partial melting of a thickened lower continental curst. The magma source is most likely dominated by amphibolites and garnet amphibolites. In combination with previously-reported data from igneous rocks from the Mesozoic in NE China, we conclude that the Xing’an block was influenced by the Mongol-Okhotsk subduction tectonic system, and experiences compressive settings from the amalgamation of the Jiamusi block in the east of the CAOB.  相似文献   

3.
LA-ICP-MS锆石U-Pb测年结果表明,研究区中生代火山岩可分为2期,分别是早白垩世早期(约144Ma)吉祥峰组流纹岩类和早白垩世晚期(约125Ma)上库力组流纹岩类与梅勒图组玄武岩类。早白垩世早期吉祥峰组流纹岩富硅、富碱、富钾(K2O/Na2O〉1),富集轻稀土元素和Rb、Th、U等元素,亏损重稀土元素、高场强元素(Nb、Ta、Ti)及Sr、P,具有A型流纹岩的特征,暗示其形成于伸展环境。早白垩世晚期火山岩显示双峰式岩石组合特征,基性端元富碱、高钾,富含轻稀土元素和Rb、Ba,亏损重稀土元素和高场强元素(Nb、Ta、Ti、Y),类似于钾玄质玄武岩,酸性端元显示A型流纹岩的特征。双峰式火山岩组合的存在暗示其形成于陆内拉张的构造环境。结合区域上中生代火山岩的空间分布规律,认为早白垩世早期火山岩的形成与蒙古-鄂霍次克缝合带的演化有关,早白垩世晚期双峰式火山岩的形成与古太平洋板块向欧亚大陆下的俯冲作用相联系。  相似文献   

4.
早古生代志留纪-泥盆纪是东昆仑原特提斯洋闭合和碰撞造山过程发生的重要时期。在该阶段出现有榴辉岩和大量A型花岗岩、镁铁-超镁铁质岩,并产出有夏日哈木镍矿、白干湖钨锡矿等一批重要的矿产资源。然而,东昆仑早古生代详细碰撞造山的深部过程、榴辉岩的折返机制等问题还没有得到合理的解释。在东昆仑造山带昆仑河地区新发现的早古生代埃达克质侵入岩可能为上述问题的解决提供了重要依据。LA-ICP-MS锆石U-Pb测年结果表明昆仑河地区存在晚奥陶世(446Ma)和晚志留世(427~425Ma)两期埃达克质侵入岩。晚奥陶世埃达克质侵入岩为花岗闪长岩,SiO2(67.55%~68.21%)和Al2O3(14.59%~15.89%)含量较高,富Na2O(4.91%~5.15%)、贫K2O(1.54%~1.64%),亏损重稀土,Y含量是7.76×10-6~8.61×10-6,Yb含量是0.67×10-6~0.93×10-6...  相似文献   

5.
《International Geology Review》2012,54(13):1755-1771
The tectonic setting of the West Qinling orogenic belt (QOB) during the Middle–Late Triassic remains a subject of debate. Petrogenesis of adakitic granodiorite plays a critical role in determining the nature of the lower continental crust and mantle dynamics during orogenic processes in the region. The Tadong adakitic granodiorite pluton in the western part of the West QOB is an important element of this system. Its petrogenesis can place severe constraints on the nature of the lower continental crust and mantle dynamics during the formation of the orogenic belt. U–Pb dates obtained through zircon laser-ablation inductively coupled mass spectrometry indicate that the Tadong pluton was emplaced at 220.2 ± 2.5 Ma, coeval with abundant magmatic rocks in the region. This indicates a prominent magmatic event in the western part of West Qinling during the Late Triassic. Geochemically the granodiorites are metaluminous to peraluminous high-K calc-alkalic and characterized by relatively high SiO2 (63.84–67.91 wt.%), Al2O3 (15.39–16.54 wt.%), and Sr (435.08–521.64 ppm), and low MgO (1.16–1.88 wt.%; Mg# = 38–46), Y (5.49–8.84 ppm) and Yb (0.34–0.91 ppm) contents, variable Eu anomalies (Eu/Eu* = 0.87–1.1), and high Sr/Y (51.72–84.45) ratios. These are compositional features of adakites that are commonly assumed to have been produced through partial melting of subducted oceanic basalt. In addition, the adakitic rocks are relatively enriched in light rare earth elements, large ion lithophile elements (Rb, Ba, Sr, Th, and K), and depleted in high field strength elements. However, petrological, geochronological, and geochemical characteristics indicate that the adakitic rocks were most likely formed by partial melting of a thickened mafic lower crust. Therefore, we suggest that the Tadong adakitic granodiorites were produced in a syn-collisional regime and associated with asthenospheric upwelling triggered by slab break-off or gravitational instability. This mechanism was responsible for generating the Late Triassic magmatism of West Qinling.  相似文献   

6.
内蒙古中部红格尔地区白音高老组主要由流纹岩组成, 含少量英安岩和粗安岩。流纹岩具有高硅、铝和钾,低钙镁的特点;富集大离子亲石元素K、Rb、Th和U, 高场强元素Nb、Ta、Ti和P强烈亏损, 具负异常;高w(Sr)/w(Y)和w(La)/w(Yb), 低w(Y)和w(Yb)。稀土元素总量较低, 轻重稀土元素分馏强烈, 具有中等的铕负异常。εNd(t)值为正值(+088~+266), tDM变化于5883~7164 Ma之间。主量、微量元素地球化学和Sr Nd Pb同位素组成显示红格尔地区白音高老组流纹岩为高钾钙碱性C型埃达克质岩, 其形成与蒙古—鄂霍茨克洋的闭合碰撞有关, 形成于早白垩世造山后加厚岩石圈跨塌阶段的板内伸展环境, 是加厚下地壳部分熔融的产物。岩浆源区部分熔融残留相为石榴子石, 在岩浆上升演化过程中经历了斜长石、钛铁矿和磷灰石的分离结晶作用。  相似文献   

7.
The Precambrian basement of Egypt is part of the Red Sea Mountains and represents the north-western part of the Arabian–Nubian Shield (ANS). Five volcanic sections are exposed in the Egyptian basement complex, namely El Kharaza, Monqul, Abu Had, Mellaha and Abu Marwa. They are located in the north Eastern Desert (ED) of Egypt and were selected for petrological and geochemical studies as they represent the Dokhan volcanics. The volcanics divide into two main pulses, and each pulse was frequently accompanied by deposition of immature molasse type sediments, which represent a thick sequence of the Hammamat group in the north ED. Compositionally, the rocks form a continuum from basaltic andesite, andesite, dacite (lower succession) to rhyodacite and rhyolite (upper succession), with no apparent compositional gaps. These high-K calc-alkaline rocks have strong affinities to subduction-related rocks with enriched LILEs (Rb, Ba, K, Th, Ce) relative to high field strength elements (Nb, Zr, P, Ti) and negative Nb anomalies relative to NMORB. The lower succession displays geochemical characteristics of adakitic rocks with SiO2 >53 wt%, Al2O3 >15 wt%, MgO >2.5 wt%, Mg# >49, Sr >650 ppm, Y <17 ppm, Yb <2 ppm, Ni >25 ppm, Cr >50 ppm and Sr/Y >42.4. They also have low Nb, Rb and Zr compared to the coexisting calc-alkaline rhyodacites and rhyolites. The highly fractionated rhyolitic rocks have strong negative Eu anomalies and possess the geochemical characteristics of A-type suites. Trace element geochemical signatures indicate a magma source consistent with post-collisional suites that retain destructive plate signatures associated with subduction zones. The adakitic rocks in the northern ANS are generated through partial melting of delaminated mafic lower crust interacting with overlying mantle-derived magma. The Dokhan volcanics were likely generated by a combination of processes, including partial melting, crystal fractionation and assimilation.  相似文献   

8.
苟正彬  刘函  李俊  崔浩杰  杨洋 《地球科学》2018,43(8):2780-2794
以往的研究多侧重于拉萨地体中南部,对拉萨地块中北部地区的火山岩浆活动的分布特点、火山岩成因及构造意义关注相对较少,且对该地区中生代火山岩的成因机制存在不同认识.尼雄地区广泛发育的白垩纪火山岩保存了大量青藏高原新生代之前的地质演化信息.岩石学和锆石U-Pb定年研究表明,火山岩类型主要为玄武安山岩、粗面安山岩和流纹岩,其SiO2含量为55.76%~77.78%,铝饱和指数(A/CNK)为0.89~3.04,属高钾钙碱性-碱钙性、偏铝质-过铝质岩石;其富集Th、U,亏损Nb、Ta等高场强元素,显示出A型花岗质岩石特征;此外,流纹岩具有较高的SiO2含量和极低的MgO、TiO2、P2O5含量及δEu值,相对亏损Ba、Nb、Ta、Sr和Eu等元素,与高分异的A型流纹岩特征一致.从1个玄武安山岩、1个粗面安山岩和2个流纹岩样品中获得的岩浆锆石U-Pb年龄分别为117 Ma、127 Ma和126~127 Ma,代表了尼雄地区早白垩世火山岩的形成年龄,否定了前人把尼雄地区火山岩全归属为始新世林子宗群年波组或渐新世日贡拉组的认识.综合研究表明,玄武安山岩、粗面安山岩和流纹岩可能为壳幔熔体混合的结果,并伴随着一定的分离结晶作用.它们可能同时受到班公湖-怒江洋壳向南、雅鲁藏布江新特提斯洋壳向北双向俯冲的影响.   相似文献   

9.
Orthopyroxene-bearing granodiorite (sometimes referred to as ‘charnockite’) with an adakitic affinity is a rare type of granitoid. It is generally accepted that the stabilization of orthopyroxene in igneous charnockites essentially requires low aH2O and/or high temperatures in a closed system. However, orthopyroxene can be an antecryst in a trans-crustal magmatic system. In this regard, orthopyroxene-bearing granitoids are somewhat analogous to pseudo-charnockites, where the orthopyroxene stems from a mafic reservoir. On the other hand, the source compositions of continental adakites can vary, which is often ignored in the interpretation of their contribution to the adakitic geochemical signature. In this study, we have investigated a rare orthopyroxene-bearing felsic pluton from the Zhuyuan area of West Qinling, Central China. The Zhuyuan pluton was emplaced in the Middle–Late Triassic (222–217 Ma) and is mainly composed of metaluminous to weakly peraluminous granodiorites belonging to the high-K calc-alkaline series. Moreover, they are characterized by high Mg# values (49.7–60.9) and Sr contents (471–697 ppm), low Y (12.2–15.4 ppm) and Yb (1.03–1.24 ppm) contents, high Sr/Y (33.2–46.2) and (La/Yb)N (15.3–21.4) ratios, and weakly negative Eu anomalies (Eu/Eu* = 0.78–0.89). The Zhuyuan adakitic granodiorites exhibit fairly limited Sr–Nd–Pb isotopic ratios and variable zircon initial Hf isotopes, indicating a major contribution from the Neoproterozoic basement of the Qinling Orogenic Belt. There is no evidence of any formation through high-pressure magmatic processes, and we propose that the adakitic signature of the Zhuyuan pluton could have been inherited from its source rocks (i.e., from the Neoproterozoic basement). The orthopyroxenes in the Zhuyuan granodiorites display poikilitic textures with high MgO, NiO and Cr2O3 contents, indicating that they have an antecrystic origin. Studies of regional tectonic evolution have shown that the Zhuyuan granodiorites formed during the tearing stage of the A'nimaque–Mianlue oceanic subduction slab. Therefore, this study emphasizes the effect of source inheritance on the formation of pseudo-charnockite with an adakitic signature.  相似文献   

10.
The Urumieh-Dokhtar magmatic arc (UDMA) of Central Iran has been formed during Neotethyan Ocean subduction underneath Eurasia. The Rabor-Lalehzar magmatic complex (RLMC), covers an area ~1000?km2 in the Kerman magmatic belt (KMB), SE of UDMA. RLMC magmatic rocks include both granitoids and volcanic rocks with calc-alkaline and adakitic signatures but with different ages.Miocene adakitic rocks are characterd by relatively enrichmented in incompatible elements, high (Sr/Y)(N) (>40), and (La/Yb)(N) (>10) ratios with slightly negative Eu anomalies (EuN/Eu*≈ 0.9), depletion in HFSEs, and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7048–0.7049). In contrast, the Oligocene granitoids exhibit low Sr/Y (<20) and La/Yb (<9) ratios, negative Eu anomalies (EuN/Eu*?≈?0.5), and enrichment in HFSEs and radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7050–0.7052), showing affinity to the island arc rocks. Eocene volcanic rocks which crusscut the younger granitoid rocks comprise andesites and dacites. Geochemically, lavas show calc-alkaline character without any Eu anomaly (EuN/Eu*?≈?1.0). Based on the geochemical and isotopic data we propose that melt source for both calc-alkaline and adakitic rocks from the RLMC can be related to the melting of a sub-continental lithospheric mantle (SCLM). Basaltic melts derived from a metasomatized mantle wedge might be emplaced at the mantle-crust boundary and formed the juvenile mafic lower crust. However, some melts fractionated in the shallow magma chambers and continued to rise forming the volcanic intermediate-mafic rocks at the surface. On the other hand, the assimilation and fractional crystallization in the shallow magma chambers of may have been responsible for the development of Oligocene granitoids with calc-alkaline affinity. In the mid-Late Miocene, following the collision between Afro-Arabia and Iranian block the juvenile mafic crust of UDMA underwent thickening and metamorphosed into garnet-amphibolites. Subsequent upwelling of a hot asthenosphere during Miocene was responsible for partial melting of thickened juvenile crust of the SE UDMA (RLM complex). The adakitic melts ascended to the shallow crust to form the adakitic rocks in the KMB.  相似文献   

11.
正长岩以及富碱的石英二长岩常常被认为起源于富集地幔的熔融。本文报道了起源于增厚陆壳熔融的石英二长岩。雀莫错岩体是分布在羌塘北部(青藏高原中部)的雀莫错(湖)东北部雀莫山上的一个侵入体,前人认为其由正长斑岩组成,形成时代不确定(45~23 Ma)。近期,我们对该侵入体进行了详细的野外地质调查和室内岩石学、地球化学以及年代学研究。雀莫错侵入岩主要由石英二长岩组成,激光锆石U-Pb测年显示,该岩体的侵位时代为始新世(41.71±0.29 Ma),与区域上大面积始新世火山岩同期。雀莫错侵入岩高硅(SiO_2=65.12%~66.71%)、富碱(Na_2O+K_2O=9.08%~9.71%)、富钾(K_2O=5.50%~5.92%)和高铝(Al_2O_314.79%),同时高Sr(1874~2001μg/g),亏损重稀土Yb(1.24~1.34μg/g)和Y(14.4~15.7μg/g),高Sr/Y(124~136)和La/Yb(67~74)比值,富集大离子亲石元素(LILEs),亏损高场强元素(HFSEs),具有不明显的Eu负异常、Sr正异常和略高的Mg~#(47~56),与区域上大面积的同期埃达克质火山岩类似。岩石具有非常均一的(~(87)Sr/~(86)Sr)i同位素比值(~0.7069)和ε_(Nd)(t)值(-2.6~-2.8)。结合区域地质、岩石和构造资料,认为雀莫错侵入岩形成于印度-欧亚大陆汇聚诱发的高原中部挤压阶段:挤压导致陆内俯冲,俯冲地壳发生部分熔融,岩浆在上升的过程中与地幔橄榄岩发生小规模反应,然后岩浆上升侵位形成了该区侵入岩。  相似文献   

12.
The relationship among magmatism, large-scale metallogenesis of Southeast China, and subduction of the Pacific plate has long been debated. The lower Yangtze River belt (LYRB) in the northeastern edge of Southeast China is characterized by intense late Mesozoic magmatism and associated polymetallic mineralization such as copper, gold, iron, tungsten, molybdenum, etc. The copper-related adakitic rocks (148–130 Ma) in this belt are the oldest episode of magmatism and intruded as small intermediate-acid intrusive bodies. The Huayuangong granitoids (HYG), located in the southern part of this belt, however, are copper-barren. Three granitoid samples from this pluton give zircon U–Pb ages of 126.4 ± 1.6 Ma, 125.9 ± 1.9 Ma, and 126.2 ± 1.2 Ma, respectively. The HYG has A-type affinity with metaluminous to weakly peraluminous, high FeOT/(FeOT+MgO) ratios, and high Zr+Nb+Ce+Yb contents. Meanwhile, 10 late Mesozoic mafic samples from the LYRB exhibit similar trace element characteristics to those of ‘continental arc andesite’ (CAA) and suggest an enriched lithospheric mantle source with depletion in high field strength elements (e.g. Nb, Ta, Zr, Hf, and Ti) and enrichment of large ion lithophile elements (e.g. Rb, Th, U, and Pb). Although the HYG exhibits similar Sr–Nd isotope composition with the mafic dikes, distinct whole-rock Pb isotope ratios imply that the granitoids and mafic magmas originated from heterogeneous mantle sources. Compared with coeval Baijuhuajian A-type rocks that are exposed along the Jiang–Shao fault of Southeast China, the HYG shows enriched Hf isotope ratios of zircon with εHf(t) values ranging from ?4.8 to ?11.1. In the Yb/Ta versus Y/Nb diagram, being different from the major asthenospheric mantle-origin Baijuhuajian pluton, a large range of and high Y/Nb ratios as well as high Zr contents of the HYG pluton suggest a magmatic source of mixing between the asthenospheric and enriched crustal component in the LYRB. Compared with early-stage copper-related adakitic rocks (148–130 Ma) with subduction-related affinities and high oxygen fugacity, the copper-barren HYG has with-plate A-type affinities and lower oxygen fugacity. Summarizing, the production of early-stage (i.e. subduction related) adakitic rocks followed by late-stage A-type granitoids in the LYRB is ascribed to the rollback of the Palaeo-Pacific plate beneath Southeast China and associated with asthenospheric upwelling and lithospheric thinning during the late Mesozoic era.  相似文献   

13.
《International Geology Review》2012,54(16):1885-1905
Late Mesozoic granitoid plutons of four distinct ages intrude the lower plate of the Hohhot metamorphic core complex along the northern margin of the North China craton. The plutons belong to two main groups: (1) Group I, deformed granitoids (148 and 140 Ma subgroups) with high Sr, LREE, and Na2O, low Y and Yb contents, high Sr/Y and La/Yb ratios, weak or no Eu anomalies, low Rb/Ba ratios, similar initial 87Sr/86Sr values (0.7064–0.7071) and low Mg# (<37 mostly, 100?×?molar MgO/MgO + FeO t ); (2) Group II, non-deformed granitoids (132 and 114 Ma subgroups) with low Sr, relatively low Na2O, high Y and Yb contents, pronounced negative Eu anomalies, high Rb/Ba ratios, and initial 87Sr/86Sr values (0.7098–0.7161). The two groups share geochemical similarities in ?Nd(t) (–11.3 to –15.4) and T DM2 ages (1.85–2.18 thousand million years) as well as Hf isotopic ratios in zircons. Geochemical modelling (using the MELTS code) suggests that similar sources but different depths of magma generation produced the early, high-pressure low-Mg adakitic granitoids and late, low-pressure granitoids with A-type characteristics. The early granitoids likely represent a partially melted, deep-seated, thickened lower continental crust that involved a minor contribution from young materials, whereas the later group partially melted at shallower depths. This granitic magmatic evolution coincided with the tectonic transition from crustal contraction to extension.  相似文献   

14.
出露于辽西白塔地区的侏罗纪中酸性火山岩及火山碎屑岩组合,主要是由粗安岩、流纹质岩屑晶屑熔结凝灰岩、粗面英安岩和流纹岩组成。通过系统的LA-ICPMS锆石的U-Pb同位素年代学研究,研究区火山岩形成年代为165~149 Ma。岩石地球化学特征显示,酸性火山岩属于钙碱性火山岩系,中性火山岩分别属于碱性火山岩系和中-高钾钙碱性火山岩系,中性岩具有埃达克质岩的地球化学特征,SiO_2≥56.20%、Al_2O_3≥15.09%、MgO≤2.89%、Sr≥561×10~(-6)、Y≤13.15×10~(-6)、Yb≤1.47×10~(-6)和无明显Eu异常。研究区火山岩普遍具有富集大离子亲石元素(Rb、K、Ba、Sr、Pb)和轻稀土元素,亏损高场强元素(Ti、Nb、Ta、P)的特征。其原始岩浆来源于基性下地壳物质的部分熔融,形成于古太平洋板块俯冲影响下板内挤压造山的构造环境。  相似文献   

15.
Early Ordovician A-type granites in the northeastern (NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region. This research presents new zircon U–Pb ages and whole-rock geochemical data for the Early Ordovician granites in the NE Songnen Block. Zircon U–Pb dating indicates that the granite in the Cuibei, Hongxing, and Meixi areas in the NE Songnen Block formed in the Early Ordovician with ages of 471–479 Ma. The granites show geochemical characteristics of high SiO2 and K2O compositions and low FeOT, MgO, CaO, and P2O5 compositions. They belong to a high K calc-alkaline series and display a weak peraluminous feature with A/CNK values of 0.98–1.14. The rocks have a ∑REE composition of 249.98–423.94 ppm, and are enriched in LREE with (La/Yb)N values of 2.87–9.87, and display obvious Eu anomalies (δEu?=?0.01–0.29). Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm, and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr?+?Y?+?Nb?+?Ce values (324–795 ppm) and Ga/Al ratios consistent with A-type granites. Based on particular geochemical features, such as high Rb/Nb (7.98–24.19) and Y/Nb (1.07–3.43), the studied A-type granites can be further classified as an A2-type subgroup. This research indicates that the Early Ordovician A-type granites were formed by the partial melting of ancient crust in an extensional setting. Lower Sr/Y and (Ho/Yb)N ratios indicate that plagioclase and amphibole are residual in the source, and garnet is absent, implying that the magma was generated at low levels of pressure. By contrast, the contemporaneous granites in the SE Xing’an Block suggest a subduction-related tectonic setting, and its adakitic property indicates a thickened continental crust. We suggest that the Paleo-Asian Ocean plate between the Xing’an and Songnen blocks subducted northward during the Early Ordovician. Meanwhile, the NE Songnen Block was exposed to a passive continental margin tectonic setting.  相似文献   

16.
Late Cretaceous igneous rocks in the southern Lhasa subterrane, Tibet, include primitive high-Mg andesites and adakites, which provide important constraints on the tectonic evolution of the Neo-Tethys Ocean. Here, we present detailed zircon UPb and Hf isotopic and whole-rock geochemical data for granodioritic and dioritic porphyry samples from the Songdo area in the southern Lhasa subterrane. Zircon UPb dating indicates that the granodiorite crystallized at 88 Ma, whereas the diorite yields ages of 68 and 66 Ma. The granodiorite has adakite-like geochemical characteristics, including high Sr (801–1005 ppm) and low Y (6.8–15.2 ppm) and Yb (0.6–1.3 ppm) concentrations, and high Sr/Y (62–145) and La/Yb (39–93) ratios. We infer that the adakitic granodiorites formed through partial melting of subducted oceanic crust. The dioritic porphyry has intermediate moderate SiO2 (53–58 wt%) and high MgO (5.6–8.2 wt%) contents, and high Mg# (66.4–69.5) values, and is therefore classified as a primitive high-Mg andesite that was derived from interaction between subducted sediment and mantle. The presence of coeval adakite and charnockite, as well as high-temperature granulite-facies metamorphism, indicates that mid-ocean ridge subduction occurred at 100–80 Ma, followed by a 10 Myr hiatus in magmatism and subsequent rollback of the Neo-Tethys slab at 68 Ma. These processes resulted in significant crustal growth within the Lhasa terrane.  相似文献   

17.
We report zircon U–Pb geochronologic and geochemical data for the post-collisional volcanic rocks from the Batamayineishan (BS) Formation in the Shuangjingzi area, northwestern China. The zircon U–Pb ages of seven volcanic samples from the BS Formation show that the magmatic activity in the study area occurred during 342–304 Ma in the Carboniferous. The ages also indicate that the Palaeo-Karamaili Ocean had already closed by 342 Ma. Moreover, the volcanic rocks also contained 10 inherited zircons with ages ranging from 565 to 2626 Ma, indicating that Precambrian continental crust or microcontinents with accretionary arcs are two possible interpretations for the basement underlying the East Junggar terrane. The sampled mafic-intermediate rocks belong to the medium-K to high-K calc-alkaline and shoshonitic series, and the formation of these rocks involved fractional crystallization with little crustal contamination. These Carboniferous mafic-intermediate rocks show depletions in Nb and Ta and enrichments in large ion lithophile elements (e.g. Rb, Ba, U, and Th) and light rare earth elements. The low initial 87Sr/86Sr values (0.7034–0.7042) and positive εNd(t) values (+2.63 to +6.46) of these rocks suggest that they formed from depleted mantle material. The mafic-intermediate rocks were most likely generated by 5–10% partial melting of a mantle source composed primarily of spinel lherzolite with minor garnet lherzolite that had been metasomatized by slab-derived fluids and minor slab melts. In contrast, the felsic rocks in the BS Formation are A-type rhyolites with positive εNd(t) values and young model ages. These rocks are interpreted to be derived from the partial melting of juvenile basaltic lower crustal material. Taken together, the mafic-intermediate rocks formed in a post-collisional extensional setting generated by slap breakoff in the early Carboniferous (342–330 Ma) and the A-type rhyolites formed in a post-collisional extensional setting triggered by the upwelling asthenosphere in the late Carboniferous (330–304 Ma).  相似文献   

18.
The closure of Paleo-Asian Ocean is considered to have occurred along the Solonker Suture in the southernmost segment of the Central Asian Orogenic Belt (CAOB), the largest Phanerozoic accretionary orogen on the globe. The suture branches to the east to form the northern Hegenshan–Heihe Suture and the southern Solonker–Changchun Suture. The Hegenshan–Heihe Suture is an ideal natural laboratory for studying the post-collisional geodynamic processes operating in a soft collision zone driven by divergent double-sided subduction. Here we report results from an integrated study of the petrology, geochronology, geochemistry, and Sr–Nd–Hf isotopic compositions of the Early Carboniferous–Early Permian magmatic suite in the Hailar Basin of the Xing’an–Erguna Block. The Early Carboniferous igneous rocks are represented by 356–349 Ma andesitic tuffs, exhibiting typical subduction-related features, such as enrichment in large-ion lithophile elements and depletion in high-field-strength elements. These features, together with the relatively depleted Sr–Nd–Hf isotopic compositions, constant Nb/Y values, but highly variable Rb/Y and Ba values indicate that these rocks were generated by partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The Late Carboniferous–Early Permian magmatic suite (317–295 Ma) is characterized by high Sr contents (313–1080 ppm) and low Y contents (5–13 ppm), and these can be subdivided into calc-alkaline adakitic rocks and high-K calc-alkaline adakitic rocks. The calc-alkaline adakitic rocks have higher values of Sr/Y, (Sm/Yb)source normalized, and Mg#, and lower values of Y, Ybsource normalized, and K2O/Na2O than the high-K calc-alkaline adakitic rocks, which suggests that the former was generated by partial melting of foundered lower continental crust and the latter by partial melting of normal lower continental crust. Based on our new data, in conjunction with those in previous studies, we conclude that the tectonic evolution of the Hegenshan–Heihe Suture involved Early Carboniferous double-sided subduction of the Nenjiang Ocean, latest Early Carboniferous soft collision between the Xing’an–Erguna and Songliao blocks, and Late Carboniferous–Early Permian post-collisional extension. We also propose a new geodynamic scenario in which removal of the lithospheric root might have occurred in a soft collision zone during the post-collision period via repeated and localized lithospheric dripping, which results from combined effects of hydration weakening of the lithosphere caused by pre-collision subduction and asthenospheric stirring triggered by slab break-off.  相似文献   

19.
In order to constrain the timing and petrogenesis of both the hosting rocks and the inner mafic microgranular enclaves (MMEs) of the Liangnong pluton, SE China, we have performed a series of bulk-rock geochemistry, zircon U–Pb, and Hf isotopic analysis, respectively. Zircon laser ablation–inductively coupled plasma–mass spectrometry U–Pb isotopic analysis yielded ages of 106.3 ± 1.1 Ma for the granodiorite and 103.9 ± 1.6 to 105 ± 1.8 Ma for monzogranite phases within the hosting pluton, as well as an age of 104.7 ± 0.8 Ma for the associated MMEs. The host rocks are metaluminous, have A/CNK values of 0.91–1.09, contain relatively high concentrations of SiO2 and K2O, are enriched in Rb, Th, Ba, Zr, and Hf, are depleted of Sr, P, Ti, Nd, and Ta, contain high concentrations of the rare earth elements (REE) and the light REE, and have moderately negative Eu anomalies (Eu*/Eu = 0.6–0.8). In comparison, the MMEs contain high concentrations of Al2O3, FeO, MgO, and TiO2, are relatively enriched in Ba, U, and Sr, and are depleted in Th, Nd, and Zr. They have lower total REE concentrations and higher Eu*/Eu values than the hosting granites. The zircons within the hosting granites have Hf crustal model ages (TDMC) that show a peak at 1.29–1.85 Ga. Zircons within the MMEs have different εHf(t) values (–3.7 to +4.9) than the zircons within the hosting granites (–10.8 to –1.9). The results indicate that the MMEs and the hosting granites crystallized from magmas with different sources, thereby showing that the Early Cretaceous magmatism in the coastal areas of SE China was generated by the widespread injection of mantle-derived magmas caused by rollback of the subducting palaeo-Pacific Plate.  相似文献   

20.
Paleogene volcanic rocks crop out in three sedimentary basins, namely, Sanshui, Heyuan and Lienping, in the attenuated continental margin of south China. Lavas from the Sanshui basin which erupted during 64-43 Ma are bimodal, consisting of intraplate tholeiitic basalt and trachyte/rhyolite associations. Similar to Cretaceous A-type granites from the nearby region, the felsic member shows peralkaline nature [Na2O + K2O ≈ 10–12%; (Na + K)/Al≈ 0.98−1.08], general enrichment in the incompatible trace elements and significant depletion in Ba, Sr, Eu, P and Ti. Although both types of the Sanshui lavas have rather uniform Nd isotope compositions [Nd(T) ≈ +6 to +4]that are comparable to Late Cenozoic basalts around the South China Sea, the felsic rocks possess apparently higher initial Sr isotope ratios (ISr up to 0.713) and form a horizontal array to the right in the Nd vs. Sr isotope plot. Closed system differentiation of mantle-derived magmas in a ‘double diffusive’ magma chamber is considered for the bimodal volcanism, in which the trachytes and rhyolites represent A-type melts after extensive crystal fractionation in the upper portion of the chamber. Such A-type melts were later contaminated by small amounts (1–3%) of upper crustal materials during ascent. On the other hand, composition of lavas in the other two basins varies from tholeiitic basalt to andesite. Their Sr and Nd isotope ratios [ISr ≈ 0.705 to 0.711; Nd(T) ≈ +1 to − 5] and generally correlative Nb-Ta depletions suggest a distinct magma chamber process involving fractional crystallization concomitant with assimilation of the country rock. We conclude that these Paleogene volcanic activities resulted from the lithospheric extension in south China that migrated southwards and eventually led to opening of the South China Sea during 30-16 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号