首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geophysical monitoring and evaluation of coastal plain aquifers   总被引:1,自引:0,他引:1  
We use time domain electromagnetic (TDEM) soundings to monitor ground water conditions beneath the coastal plain in eastern North Carolina. The TDEM method measures the earth's response to an induced electromagnetic field. The resulting signal is converted, through a complex inversion process, to apparent resistivity values, which can be directly correlated to borehole resistivity logs. TDEM soundings are used to map the interface between fresh and salt water within coastal aquifers, and estimate depth to basement when siting new monitoring wells. Focused TDEM surveys have identified areas of salt water encroachment caused by high volumes of discharge from local supply wells. Electromagnetic sounding, when used in tandem with the state's network of monitoring wells, is an accurate and inexpensive tool for evaluating fresh water/salt water relationships on both local and regional scales within coastal plain aquifers.  相似文献   

2.
Abstract

Vertical electrical resistivity soundings were measured near hydrological observation wells in order to ascertain whether geophysical means could be used to map saline water intrusion into a fresh water aquifer in Israel. The soundings showed that the low resistivity layers associated with the salt water are readily discernible. The technique was applied to the entire coastal belt and resulted in a detailed study of the saline water body and its extent. Measurements were repeated six years later and good agreement between the two sets of measurements was noted. This technique is therefore judged to be an accurate tool for the mapping of salt water intrusion in fresh-water aquifers.  相似文献   

3.
Inversion of resistivity in Magnetic Resonance Sounding   总被引:3,自引:0,他引:3  
Magnetic Resonance Sounding (MRS, or Surface Nuclear Magnetic Resonance - SNMR) is used for groundwater exploration and aquifer characterization. Since this is an electromagnetic method, the excitation magnetic field depends on the resistivity of the subsurface. Therefore, the resistivity has to be taken into account in the inversion: either as a priori information or as an inversion parameter during the inversion process, as introduced in the presented paper. Studies with synthetic data show that water content and resistivity can be resolved for a low resistive aquifer even using only the amplitude of the MRS signal. However, the inversion result can be significantly improved using amplitude and phase of the MRS signal. The successful implementation of the inversion for field data shows that the resistivities derived from MRS are comparable to those from conventional geoelectric methods such as DC resistivity and transient electromagnetic. By having information about both the resistivity and the water content, MRS inversions give information about the quality of the water in the aquifer. This is of utmost interest in hydrogeological studies as this specific information cannot be determined solely by geoelectric measurements, due to the nonunique dependence of resistivity on water content and salinity.  相似文献   

4.
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground‐based electromagnetic surveys, electrical resistivity models can be obtained to provide high‐resolution three‐dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion‐State (CHI‐S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time‐domain electromagnetic (TDEM) dataset was collected. For this location, a simple two‐dimensional cross‐sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root‐mean‐square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.  相似文献   

5.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

6.
A tensor magnetotelluric test survey was carried out in the region of Santa Catarina, located in the Chalco sub-basin of the Mexico Basin. The objective was to define the stratification at depth with an emphasis on the geometry of the main aquifer of that region which is partially known from DC resistivity soundings and drilling. High-quality magnetotelluric soundings could be recorded in the immediate vicinity of large urban zones because the sub-surface is very conductive. Interpretation shows that the solid bedrock is located at a depth of at least 800 m to the south and 1300 m to the north; it could, however, be much deeper. Using complementary DC resistivity sounding and well-logging data, three main layers have been defined overlying the bedrock. These layers are, from surface to bottom, an unsaturated zone of sand, volcanic ash and clay about 10 m thick, followed by a very conductive (1.5 ohm·m) 200 m thick layer of sand and ash with intercalated clay, saturated with highly mineralized water, and finally a zone with resistivity increasing gradually to 60 ohm·m. The investigated deep aquifer constitutes most of this third layer. It consists of a sequence of sand, gravel, pyroclastites and mainly fractured basalts. MT resistivity soundings and magnetic transfer functions also indicate that a shallow resistive structure is dipping, from the northwest, into the lacustrine deposits of the basin. This geologic feature is likely to be highly permeable fractured basaltic flows, which provide a channel by which water contaminated by the Santa Catarina landfill may leak into the basin.  相似文献   

7.
In order to investigate aquifers, several geophysical surveys have been carried out in the Baril area of the southern flank of Piton de la Fournaise volcano on Reunion in the Indian Ocean using audiomagnetotelluric (AMT), very-low-frequency (VLF) and self-potential (SP) methods. We present the results with emphasis on a comparison between SP data and the findings of geoelectric surveys. AMT soundings have indicated, from the surface downward, three layers: (i) resistive volcanic rocks, (ii) an intermediate resistivity layer, and (iii) a conductive basement attributed to a seawater-bearing aquifer. VLF measurements allow the mapping of the first layer apparent resistivity, and therefore its bottom, when the true resistivity is supposed to be isotropic and homogenous. When this assumption does not hold, only the SP method permits the mapping of this bottom. Because of the good agreement between the SP and electromagnetic results, we propose the SP method as the first tool that should be used in studying shallow hydrogeological structures in volcanic areas.  相似文献   

8.
The problem of equivalence in direct current (DC) resistivity and electromagnetic methods for a thin resistive and conducting layer is well‐known. Attempts have been made in the past to resolve this problem through joint inversion. However, equivalence still remains an unresolved problem. In the present study, an effort is made to reduce non‐uniqueness due to equivalence using global optimization and joint inversion by successive refinement of the model space. A number of solutions derived for DC resistivity data using very fast simulated annealing global inversion that fits the observations equally well, follow the equivalence principle and show a definite trend. For a thin conductive layer, the quotient between resistivity and thickness is constant, while for a resistive one, the product between these magnitudes is constant. Three approaches to obtain very fast simulated annealing solutions are tested. In the first one, layer resistivities and thicknesses are optimized in a linear domain. In the second, layer resistivities are optimized in the logarithmic domain and thicknesses in the linear domain. Lastly, both layer resistivities and thicknesses are optimized in the logarithmic domain. Only model data from the mean models, corresponding to very fast simulated annealing solutions obtained for approach three, always fit the observations. The mean model defined by multiple very fast simulated annealing solutions shows extremely large uncertainty (almost 100%) in the final solution after inversion of individual DC resistivity or electromagnetic (EM) data sets. Uncertainty associated with the intermediate resistive and conducting layers after global optimization and joint inversion is still large. In order to reduce the large uncertainty associated with the intermediate layer, global optimization is performed over several iterations by reducing and redefining the search limits of model parameters according to the uncertainty in the solution. The new minimum and maximum limits are obtained from the uncertainty in the previous iteration. Though the misfit error reduces in the solution after successive refinement of the model space in individual inversion, it is observed that the mean model drifts away from the actual model. However, successive refinement of the model space using global optimization and joint inversion reduces uncertainty to a very low level in 4–5 iterations. This approach works very well in resolving the problem of equivalence for resistive as well as for conducting layers. The efficacy of the approach has been demonstrated using DC resistivity and EM data, however, it can be applied to any geophysical data to solve the inherent ambiguities in the interpretations.  相似文献   

9.
高密度电阻率法在海底金矿含水构造探测中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
海底金矿上覆岩层中含水直接对矿床的开采构成威胁,选择山东三山岛金矿新立矿区海底-135 m水平沿脉巷道,采用地球物理高密度电阻率法对该巷道635 m测线以下200 m深度范围内岩体中的含水构造进行了坑道探测,利用三种装置(温纳装置(Wenner)、偶极装置(Dipole-Dipole)、Schlumberger装置)进行实施,相互验证,取得了很好的探测结果.温纳、偶极和Schlumberger三种装置的视电阻率反演结果反映在测线(-135 m沿脉巷道)以下至30 m深度为一高阻层,表明自-135~-165 m的岩体中已不含水或含少量的水;测线以下30~60 m段为低阻层,反映-165~-200 m的岩体中含基岩裂隙水;测线以下大于60 m的地段为特高阻层,反映-200 m以下岩体含水性逐渐变差.该探测结果与矿区水文地质结构调查分析结论具有很好的一致性,表明了坑道高密度电阻率法探测含水构造是可行的.  相似文献   

10.
The oil shale exploration program in Jordan is undertaking great activity in the domain of applied geophysical methods to evaluate bitumen‐bearing rock. In the study area, the bituminous marl or oil shale exhibits a rock type dominated by lithofacies layers composed of chalky limestone, marls, clayey marls, and phosphatic marls. The study aims to present enhancements for oil shale seam detection using progressive interpretation from a one‐dimensional inversion to a three‐dimensional modelling and inversion of ground‐based transient electromagnetic data at an area of stressed geological layers. The geophysical survey combined 58 transient electromagnetic sites to produce geoelectrical structures at different depth slices, and cross sections were used to characterise the horizon of the most likely sites for mining oil shale. The results show valuable information on the thickness of the oil shale seam at 3.7 Ωm, which is correlated to the geoelectrical layer between 2‐ and 4 ms transient time delays, and at depths ranging between 85 and 105 m. The 300 m penetrated depth of the transient electromagnetic soundings allows the resolution of the main geological units at narrow resistivity contrast and the distinction of the main geological structures that constrain the detection of the oil shale seam. This geoelectrical layer at different depth slices illustrates a localised oil shale setting and can be spatially correlated with an area bounded by fold and fault systems. Also, three‐dimensional modelling and inversion for synthetic and experimental data are introduced at the faulted area. The results show the limitations of oil shale imaging at a depth exceeding 130 m, which depends on the near‐surface resistivity layer, the low resistivity contrast of the main lithological units, and the degree of geological detail achieved at a suitable model's misfit value.  相似文献   

11.
The Wadi El Natrun area is characterized by a very complicated geological and hydrogeological system. 45 vertical electrical soundings (Schlumberger array) were measured in the study area to elucidate the peculiarity of this unique regime, specifically the nature of waterless area. 2D and 3D resistivity inversion based on the finite element technique and regularization method were applied on the data set. 2D and 3D model resolution was investigated through the use of the Depth and Volume of Investigation Indexes. A very good matching was found between the zones of high resistivity, the waterless area, and the non-productive wells. The low resistivity zones (corresponding to Lower Pliocene clay) were also identified. The middle resistivity fresh water aquifer zones were recognized. Available results can assist in the aquifer management by selecting the most productive zone of groundwater.  相似文献   

12.
Since the 1990s a large number of sinkholes have appeared in the Dead Sea (DS) coastal area. Sinkhole development was triggered by the lowering of the DS level. In the literature the relationship between the sinkholes and the DS level is explained by intrusion of relatively fresh water into the aquifer thereby dramatically accelerating the salt dissolution with creation of subsurface caverns, which in turn cause sinkholes. The main goal of our project was detection and localization of relatively fresh groundwater. During our study we used the transient electromagnetic method (TEM) to measure the electrical resistivity of the subsurface. As a test site we selected Nahal Hever South which is typical for the DS coast. Our results show that resistivity of the shallow subsurface reflects its vertical and lateral structure, e.g., its main hydrogeological elements explain the inter-relations between geology, hydrogeology, and sinkholes. The TEM method has allowed detailed differentiation of layers (clay, salt, etc.) in the subsurface based on their bulk resistivity. The 10 m-thick salt layer composed of idiomorphic crystals of halite deposited during the earlier Holocene period was extrapolated from borehole HS-2 through the study area. It was found that in Nahal Hever the typical value of the bulk resistivity of clay saturated with the DS brine varies between 0.2 and 0.3 Ωm, whereas saturated gravel and sandy sediments are characterized by resistivity between 0.4 and 0.6 Ωm. The high water salinity of the aquifer (enveloping the salt layer) expressed in terms of resistivity is also an important characterization of the sinkhole development mechanism. The electrical resistivity of the aquifer in the vicinity of the salt unit and its western border did not exceed 1 Ωm (in most cases aquifer resistivity was 0.2-0.6 Ωm) proving that, in accordance with existing criteria, the pores of the alluvial sediments are filled with highly mineralized DS brine. However, we suggest that the criterion of the aquifer resistivity responsible for the salt dissolution should be decreased from 1 Ωm to 0.6 Ωm corresponding to the chloride concentration of approximately 100 g/l (the chloride saturation condition reaches 224 g/l in the northern DS basin and 280 g/l in the southern one).Based on TEM results we can reliably conclude that in 2005, when most of sinkholes had appeared at the surface, salt was located within a very low resistivity environment inside sediments saturated with DS brine. Intrusion of relatively fresh groundwater into the aquifer through the 600 × 600 m2area affected by sinkholes has not been observed.  相似文献   

13.
Lahcen Zouhri 《水文研究》2010,24(10):1308-1317
An electrical prospecting survey is conducted in the Rharb basin, a semi‐arid region in the southern part of the Rifean Cordillera (Morocco) to delineate characteristics of the aquifer and the groundwater affected by the marine intrusion related to Atlantic Ocean. Analysis and interpretations of electrical soundings, bi‐logarithmic diagrams and the geoelectrical sections highlight a monolayer aquifer in the southern part, a multilayer system in the northern part of the Rharb basin and lenticular semi‐permeable formations. Several electrical layers have been deduced from the analysis of bi‐logarithmic diagrams: resistant superficial level (R0), conducting superficial level (C0), resistant level (R), intermediary resistant level (R′), conducting level (Cp) and intermediary layer of resistivity (AT). Spatial distribution of the resistivity deduced from the interpretation of apparent resistivity maps (AB = 400 and 1000 m) and the decreasing of resistivity values (35–10 Ωm), in particular in the coastal zone show that this heterogeneity is related to several anomalies identified in the coastal area, which result from hydraulic and geological processes: (i) heterogeneous hydraulic conductivity in particular in the southern part of the Rharb; (ii) lateral facies and synsedimentary faulting and (iii) the relationship between the electrical conductivity and chloride concentration of groundwater shows that salinity is the most important factor controlling resistivity. The distribution of fresh/salt‐water zones and their variations in space along geoelectrical sections are established through converting subsurface depth‐resistivity models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Surface electrical and electromagnetic methods have a limited resolution capability for determining the conductivity structure of the earth. In one-dimensional modelling a collection of many thin layers is frequently considered as one composite layer, which is then macro-anisotropic. Neither galvanic methods nor inductive methods alone can resolve the anisotropy of the ground, but a joint inversion of galvanic and inductive data may do so. The necessity of including the coefficient of anisotropy in the joint inversion of galvanic and inductive sounding data is demonstrated. An analysis is made of the combined use of geoelectrical and transient soundings to resolve the coefficient of anisotropy of a subsurface layer for varying thickness, resistivity and coefficient of anisotropy. It is found that the coefficient of anisotropy is well resolved only for layers that are many times thicker than the overburden and for coefficients of anisotropy that are not too small. The ability of the joint inversion of geoelectrical and transient sounding data to resolve macro-anisotropic layers is tested using realistic earth models determined from electrical logs.  相似文献   

15.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

16.
Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long‐offset transient electromagnetic method and the central‐loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One‐dimensional joint inversion of central‐loop and long‐offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two‐dimensional/three‐dimensional resistivity structures, representing possible mud migration paths at large depths using the long‐offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (>5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half‐space on the measured long‐offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half‐space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long‐offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best‐fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half‐space, although the resistivity and depth cannot be determined clearly.  相似文献   

17.
 A study of the geoelectrical structure of the central part of Piton de la Fournaise volcano (Réunion, Indian Ocean) was made using direct current electrical (DC) and transient electromagnetic soundings (TEM). Piton de la Fournaise is a highly active oceanic basaltic shield and has been active for more than half a million years. Joint interpretation of the DC and TEM data allows us to obtain reliable 1D models of the resistivity distribution. The depth of investigation is of the order of 1.5 km but varies with the resistivity pattern encountered at each sounding. Two-dimensional resistivity cross sections were constructed by interpolation between the soundings of the 1D interpreted models. Conductors with resistivities less than 100 ohm-m are present at depth beneath all of the soundings and are located high in the volcanic edifice at elevations between 2000 and 1200 m. The deepest conductor has a resistivity less than 20 ohm-m for soundings located inside the Enclos and less than 60–100 ohm-m for soundings outside the Enclos. From the resistivity distributions, two zones are distinguished: (a) the central zone of the Enclos; and (b) the outer zone beyond the Enclos. Beneath the highly active summit area, the conductor rises to within a few hundred meters of the surface. This bulge coincides with a 2000-mV self-potential anomaly. Low-resistivity zones are inferred to show the presence of a hydrothermal system where alteration by steam and hot water has lowered the resistivity of the rocks. Farther from the summit, but inside the Enclos, the depth to the conductive layers increases to approximately 1 km and is inferred to be a deepening of the hydrothermally altered zone. Outside of the Enclos, the nature of the deep, conductive layers is not established. The observed resistivities suggest the presence of hydrated minerals, which could be found in landslide breccias, in hydrothermally altered zones, or in thick pyroclastic layers. Such formations often create perched water tables. The known occurrence of large eastward-moving landslides in the evolution of Piton de la Fournaise strongly suggests that large volumes of breccias should exist in the interior of the volcano; however, extensive breccia deposits are not observed at the bottom of the deep valleys that incise the volcano to elevations lower than those determined for the top of the conductors. The presence of the center of Piton de la Fournaise beneath the Plaine des Sables area during earlier volcanic stages (ca. 0.5 to 0.150 Ma) may have resulted in broad hydrothermal alteration of this zone. However, this interpretation cannot account for the low resistivities in peripheral zones. It is not presently possible to discriminate between these general interpretations. In addition, the nature of the deep conductors may be different in each zone. Whatever the geologic nature of these conductive layers, their presence indicates a major change of lithology at depth, unexpected for a shield volcano such as Piton de la Fournaise. Received: 3 November 1999 / Accepted: 15 September 1999  相似文献   

18.
The indication from surface measurements of a zone of relatively high conductivity (resistivity<200 ohm-m) at depths between 20 and 50 km has become so general over the Earth that regions without this zone can be considered anomalous. However, the depths indicated often span the lower crust and the uppermost mantle, so that before any effect can be definitely attributed to one or the other, the depth resolution in the electromagnetic measurements must be carefully considered. This paper applies the eigenvector decomposition of generalized linear inverse theory to soundings by Schlumberger resistivity, by magnetotellurics, by man-made electromagnetic fields formed by controlled current flow in grounded electric transmission lines, and by natural magnetic field variation studies to improve the bounds on depth, thickness and conductivity of a conductive layer. It is shown that many of the methods are capable of giving the depth to the top of a conductor with remarkable accuracy. Joint inversion of two or more of them offers an advantage in the separation of thickness and conductivity of both conductive and resistive layers. Natural geomagnetic field transfer functions, while accurately mapping the position of the edge of a conductor, do not provide the resolution of the other techniques, largely because the frequencies that can be practically measured at present are much too low.  相似文献   

19.
地面核磁共振信号相位求取电阻率   总被引:1,自引:0,他引:1       下载免费PDF全文
椭圆极化现象是电磁场在导电介质中传播时产生的,为得到准确的相位信息,在计算激发磁场时应考虑椭圆极化。本文研究了地面核磁共振(SNMR)信号相位求取电阻率的基本方法,利用SNMR信号通过广义逆反演法得到电阻率未知情况下的含水率及层位分布,作为相位反演电阻率的先验值,通过模拟退火法实现对电阻率的反演。对SNMR的研究解决了通过相位对电阻率的求取,有利于进一步利用相位信息提高含水层和含水率反演的精度。  相似文献   

20.
Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site‐specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ~500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time‐domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号