首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The displacement formulation of the finite element method is well suited to the analysis of elasto-plasticity problems involving compressible material behaviour, but it is well known that numerical difficulties occur when the material is incompressible or nearly incompressible. The effect of these additional constraints depends on both element formulation and mesh topology. A two-dimensional plane strain finite element formulation suitable for the solution of problems involving large strains and displacements (but small rotations) based on the isoparametric approach is described. The kinematics of deformation are defined in terms of the Eulerian strain rates that are invariably used in small strain analysis; the formulation therefore retains some of the character of small strain theory but includes additional geometrically non-linear terms. The results of a series of plane strain finite element analyses of two cylindrical expansion problems are presented. These results confirm the previously observed trend that as Poisson's ratio approaches 0·5 then the quality of the calculated stress deteriorates. The study also indicates that the solution quality depends increasingly on mesh topology as perfect incompressibility is reached.  相似文献   

2.
Development of robust numerical solutions for poro‐elasticity is an important and timely issue in modern computational geomechanics. Recently, research in this area has seen a surge in activity, not only because of increased interest in coupled problems relevant to the petroleum industry, but also due to emerging applications of poro‐elasticity for modelling problems in biomedical engineering and materials science. In this paper, an original mixed least‐squares method for solving Biot consolidation problems is developed. The solution is obtained via minimization of a least‐squares functional, based upon the equations of equilibrium, the equations of continuity and weak forms of the constitutive relationships for elasticity and Darcy flow. The formulation involves four separate categories of unknowns: displacements, stresses, fluid pressures and velocities. Each of these unknowns is approximated by linear continuous functions. The mathematical formulation is implemented in an original computer program, written from scratch and using object‐oriented logic. The performance of the method is tested on one‐ and two‐dimensional classical problems in poro‐elasticity. The numerical experiments suggest the same rates of convergence for all four types of variables, when the same interpolation spaces are used. The continuous linear triangles show the same rates of convergence for both compressible and entirely incompressible elastic solids. This mixed formulation results in non‐oscillating fluid pressures over entire domain for different moments of time. The method appears to be naturally stable, without any need of additional stabilization terms with mesh‐dependent parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In a previous publication we developed a new mixed least‐squares method for poro‐elasticity. The approximate solution was obtained via a minimization of a least‐squares functional, based upon the equations of equilibrium, the equations of continuity and weak forms of the constitutive relationships for elasticity and Darcy flow. The formulation involved four independent types of variables: displacements, stresses, pore pressures and velocities. All of them were approximated by linear continuous triangles. Encouraged by the computational results, obtained from the two‐dimensional implementation of the method, we extended our formulation to three dimensions. In this paper we present numerical examples for the performance of continuous linear tetrahedra within the context of the mixed least‐squares method. The initial results suggest that the method works well in the nearly and entirely incompressible limits for elasticity. For poro‐elasticity, the obtained pore pressures are stable without exhibiting the oscillations, which are observed when the standard Galerkin formulation is used. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Similar to plane strain, axisymmetric stress problem is also highly kinematics constrained. Standard displacement‐based finite element exhibits volumetric locking issue in simulating nearly/fully incompressible material or isochoric plasticity under axisymmetric loading conditions, which severely underestimates the deformation and overestimates the bearing capacity for structural/geotechnical engineering problems. The aim of this paper is to apply variational multiscale method to produce a stabilized mixed displacement–pressure formulation, which can effectively alleviate the volumetric locking issue for axisymmetric stress problem. Both nearly incompressible elasticity and isochoric J2 elastoplasticity are investigated. First‐order 3‐node triangular and 4‐node quadrilateral elements are tested for locking issues. Several representative simulations are provided to demonstrate the performance of the linear elements, which include the convergence study and comparison with closed‐form solutions. A comparative study with pressure Laplacian stabilized formulation is also presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
A fully coupled meshfree algorithm is proposed for numerical analysis of Biot’s formulation. Spatial discretization of the governing equations is presented using the Radial Point Interpolation Method (RPIM). Temporal discretization is achieved based on a novel three-point approximation technique with a variable time step, which has second order accuracy and avoids spurious ripple effects observed in the conventional two-point Crank Nicolson technique. Application of the model is demonstrated using several numerical examples with analytical or semi-analytical solutions. It is shown that the model proposed is effective in simulating the coupled flow deformation behaviour in fluid saturated porous media with good accuracy and stability irrespective of the magnitude of the time step adopted.  相似文献   

9.
This paper briefly reviews the formulations used over the last 40 years for the solution of problems involving tensile cracking, with both the discrete and the smeared crack approaches. The paper focuses on the smeared approach, identifying as its main drawbacks the observed mesh‐size and mesh‐bias spurious dependence when the method is applied ‘straightly’. A simple isotropic local damage constitutive model is considered, and the (exponential) softening modulus is regularized according to the material fracture energy and the element size. The continuum and discrete mechanical problems corresponding to both the weak discontinuity (smeared cracks) and the strong discontinuity (discrete cracks) approaches are analysed and the question of propagation of the strain localization band (crack) is identified as the main difficulty to be overcome in the numerical procedure. A tracking technique is used to ensure stability of the solution, attaining the necessary convergence properties of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is stable and remarkably robust. As a consequence, the results obtained do not suffer from spurious mesh‐size or mesh‐bias dependence, comparing very favourably with those obtained with other fracture and continuum mechanics approaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
It is well accepted that severe numerical difficulties arise when using the conventional finite element displacement method to analyse incompressible, or nearly incompressible, solids. These effects are caused by the kinematic constraints imposed on the nodal velocities by the constant volume condition. In elastic-plastic analysis, these effects are due to a conflict between the plastic flow rule and the finite element discretization. Although several methods have been proposed to cope with this problem, none has been based on the appropriate choice of displacement interpolation to minimise the constraints. In this paper, a new displacement interpolation, which is able to reduce the imposed constraints, is adopted. Comparisons of the results with those from a conventional linear displacement interpolation are made for predictions of cylindrical and spherical cavity expansion limit pressures in elastic-plastic solids. This study suggests that the proposed displacement interpolation is preferable to the conventional one in the elastic-plastic finite element analysis of one dimensional-axisymmetric problems which involve nearly incompressible material behaviour.  相似文献   

11.
对于不排水、不可压缩饱和软土地基的固结问题的有限元分析,可以用Biot固结方程来考虑土体颗粒与孔隙水间的相互作用。由于受Babuska-Brezzi稳定条件的限制,用常规的等插值u-p混合有限元法求解将导致孔隙压力出现紊乱的结果。提出了基于位移和压力线性等插值函数的两重网格,但位移独立变量总数大于独立压力变量总数的计算方法,可以满足Babuska-Brezzi稳定条件,使得位移场和压力场单元插值阶数保持一致。通过几个简单算例验证了提出方法的正确性。  相似文献   

12.
Numerical solutions for problems in coupled poromechanics suffer from spurious pressure oscillations when small time increments are used. This has prompted many researchers to develop methods to overcome these oscillations. In this paper, we present an overview of the methods that in our view are most promising. In particular we investigate several stabilized procedures, namely the fluid pressure Laplacian stabilization (FPL), a stabilization that uses bubble functions to resolve the fine‐scale solution within elements, and a method derived by using finite increment calculus (FIC). On a simple one‐dimensional test problem, we investigate stability of the three methods and show that the approach using bubble functions does not remove oscillations for all time step sizes. On the other hand, the analysis reveals that FIC stabilizes the pressure for all time step sizes, and it leads to a definition of the stabilization parameter in the case of the FPL‐stabilization. Numerical tests in one and two dimensions on 4‐noded bilinear and linear triangular elements confirm the effectiveness of both the FPL‐ and the FIC‐stabilizations schemes for linear and nonlinear problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
It is well established that severe numerical difficulties may arise when the displacement finite element method is used to analyse the behaviour of incompressible solids and this is particularly true for axisymmetric problems. These numerical difficulties are caused by excessive kinematic constraints and are reflected by strong oscillations in the calculated stress distribution and overestimations of collapse loads. The purpose of this paper is to present new displacement finite element formulations which are particularly suitable for axisymmetric analysis of incompressible materials. A direct comparison is made of the performance of various displacement finite elements in the analysis of elastic or plastic incompressible materials under axisymmetric loading conditions. Particular attention is focused on the performance of various axisymmetric displacement elements in predicting the stress field of incompressible or nearly incompressible materials. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The equations governing the undrained linear elastic behaviour of a saturated soil are formally similar to the equations governing slow of an incompressible Newtonian viscous fluid. This principle of equivalence can then be effectively employed to obtain the load-deflection reiationship for a deep rigid anchor with the shape of a solid of revolution which is embedded in bonded contact with an unbounded incompressible elastic medium. It is found that the load-deflection relationship for the deep rigid anchor can be directly recovered from the expression for the drag induced on an impermeable object with the same size and shape as the anchor, which is appropriately placed in a slow viscous flow region of uniform velocity.  相似文献   

15.
Acta Geotechnica - When applying equal-order monolithic schemes for the solution of incompressible fluid saturated porous media dynamics, the resulting pressure field often exhibit spurious...  相似文献   

16.
A boundary element model for stress/stability analysis of underground excavations in the vicinity of faults is presented. The boundary element formulation adopts the fictitious stress method for the simulation of excavation boundaries and the displacement discontinuity method for the representation of faults. The numerical model employs the Barton–Bandis non-linear joint model for the modelling of the fault behaviour and linear elastic behaviour for the rock. An incremental-iterative in situ stress relaxation algorithm is implemented for the non-linear analysis of the faults. Both deformation and peak strength models of Barton–Bandis are incorporated for modelling the mechanical behaviour of the fault. The non-linear deformation of fault considers the effects of coupling between shear and normal stresses and displacement, joint closure, joint separation, hardening followed by post-peak or residual behaviour. The peak strength model employs a mobilized non-linear shear strength envelope. The differences between linear and non-linear simulation of the fault models are discussed. A comparison of model predictions with the classical Mohr–Coulomb peak strength model with constant joint stiffness is presented. The numerical model is used for a case study of Canadian hard rock underground mine. The shear and normal displacements along the fault during four mining sequences with backfill simulation are presented and discussed.  相似文献   

17.
In view of rapid developments in iterative solvers, it is timely to re‐examine the merits of using mixed formulation for incompressible problems. This paper presents extensive numerical studies to compare the accuracy of undrained solutions resulting from the standard displacement formulation with a penalty term and the two‐field mixed formulation. The standard displacement and two‐field mixed formulations are solved using both direct and iterative approaches to assess if it is cost‐effective to achieve more accurate solutions. Numerical studies of a simple footing problem show that the mixed formulation is able to solve the incompressible problem ‘exactly’, does not create pressure and stress instabilities, and obviate the need for an ad hoc penalty number. In addition, for large‐scale problems where it is not possible to perform direct solutions entirely within available random access memory, it turns out that the larger system of equations from mixed formulation also can be solved much more efficiently than the smaller system of equations arising from standard formulation by using the symmetric quasi‐minimal residual (SQMR) method with the generalized Jacobi (GJ) preconditioner. Iterative solution by SQMR with GJ preconditioning also is more elegant, faster, and more accurate than the popular Uzawa method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is devoted to the formulation of the direct differentiation method and adjoint state method in quasi‐static linear poroelasticity. We derive the strong and weak formulation of both methods and discuss their solutions using the finite element method. The techniques are illustrated and tested on two numerical examples for the case of isotropic and homogeneous material. The presented formulations can be extended to more complex behaviour in poromechanics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This paper analyses the problem of a hydraulically driven fracture, propagating in an impermeable, linear elastic medium. The fracture is driven by injection of an incompressible, viscous fluid with power‐law rheology and behaviour index n?0. The opening of the fracture and the internal fluid pressure are related through the elastic singular integral equation, and the flow of fluid inside the crack is modelled using the lubrication theory. Under the additional assumptions of negligible toughness and no lag between the fluid front and the crack tip, the problem is reduced to self‐similar form. A solution that describes the crack length evolution, the fracture opening, the net fluid pressure and the fluid flow rate inside the crack is presented. This self‐similar solution is obtained by expanding the fracture opening in a series of Gegenbauer polynomials, with the series coefficients calculated using a numerical minimization procedure. The influence of the fluid index n in the crack propagation is also analysed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号