首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. G. Ernst 《Island Arc》1999,8(2):125-153
The Dabie-Sulu belt of east-central China, the Kokchetav Complex of northern Kazakhstan, the Maksyutov Complex of the South Urals, the Dora Maira Massif of the Western Alps, and the Western Gneiss Region of southwestern Norway lie astride intracontinental suture zones. All represent collisional mountain belts. Adjoining Eurasian regions exhibit little or no evidence of a coeval calc-alkaline arc. Each metamorphic complex contains mineralogic and textural relics of the presence or former existence of coesite ± diamond. Other ultrahigh-P, moderate-T metamorphic phases, including K-rich clinopyroxene, Mg-rich garnet, ellenbergerite, lawsonite, Al-rutile, glaucophane, high-Si phengite, and associations such as coesite + dolomite, magnesite + diopside, and talc + kyanite, diopside, jadeite, or phengite also testify to pressures approaching or exceeding 2.8 GPa. Each of the five well-studied Eurasian ultrahigh-pressure complexes consists chiefly of old, cool continental crust. Deep-seated recrystallization took place during the Phanerozoic. Subduction zones constitute the only known plate-tectonic environment where such high-P, low-T conditions exist. A model involving underflow of a salient of continental crust imbedded in oceanic crust-capped lithosphere explains the ultrahigh- pressure metamorphism. Partly exhumed ultrahigh-pressure terranes consist of relatively thin sheets 7 ± 5 km thick. During early stages of plate descent, hydration of relatively anhydrous units occurs, and volatiles are expelled from hydrous rocks. If present, aqueous fluids markedly catalyze reactions. Experimental studies on MORB bulk compositions demonstrate that, for common subduction-zone P–T trajectories, amphibole (the major hydrous phase in metabasaltic rocks) dehydrates at less than ~ 2.0 GPa; accordingly, mafic blueschists and amphibolites expel H2O at great depth and, except for some coarse-grained, dry metagabbros, tend to recrystallize to eclogite. Serpentinized mantle beneath the oceanic crust devolatilizes at comparable pressures. In contrast, phengite and biotite remain stable to pressures exceeding 3.5 GPa in associated quartzofeldspathic rocks. So, under ultrahigh-pressure conditions, the micaceous lithologies that dominate the continental crust fail to evolve significant H2O, and may transform incompletely to eclogitic assemblages. Although hydrous rocks expel volatiles during compaction and shallow burial, very deep underflow of partly hydrated oceanic crust + mantle generates most of the volatile flux along and above a subduction zone prior to continental collision. As large masses of sialic crust enter the convergent plate junction, fluid evolution at deep levels severely diminishes, and both convergence and dehydration terminate. After cessation of ultrahigh-pressure recrystallization, tectonic slices of sialic massifs return to shallow depths along the subduction channel, propelled by buoyancy; collisional sheets that retain ultrahigh-pressure effects lose heat efficiently across both upper (extensional, normal fault) and lower (subduction, reverse fault) tectonic contacts. These sheets ascend to midcrustal levels rapidly at average exhumation rates of 2–12 mm/year. Surviving ultrahigh-pressure relics occur as micro-inclusions encased in dense, strong, impermeable, unreactive mineralogic hosts, and are shielded during return towards conditions characteristic of midcrustal levels. Rehydration attending decompression is incomplete; its limited extent reflects the coarse grain size and relative impermeability of the rocks undergoing retrogression, as well as declining temperature and lack of aqueous fluids.  相似文献   

2.
Thermo-mechanical physical modelling of continental subduction is performed to investigate the exhumation of deeply subducted continental crust. The model consists of two lithospheric plates made of new temperature sensitive analogue materials. The lithosphere is underlain by liquid asthenosphere. The continental lithosphere contains three layers: the weak sedimentary layer, the crust made of a stronger material, and of a still stronger lithospheric mantle. The whole model is subjected to a constant vertical thermal gradient, causing the strength reduction with depth in each lithospheric layer. Subduction is driven by both push force and pull force. During subduction, the subducting lithosphere is heating and the strength of its layers reduces. The weakening continental crust reaches maximal depth of about 120 km and cannot subduct deeper because its frontal part starts to flow up. The subducted crust undergoes complex deformation, including indicated upward ductile flow of the most deeply subducted portions and localised failure of the subducted upper crust at about 50-km depth. This failure results in the formation of the first crustal slice which rises up between the plates under the buoyancy force. This process is accompanied by the delamination of the crustal and mantle layers of the subducting lithosphere. The delamination front propagates upwards into the interplate zone resulting in the formation of two other crustal slices that also rise up between the plates. Average equivalent exhumation rate of the crustal material during delamination is about 1 cm/year. The crust-asthenosphere boundary near the interplate zone is uplifted. The subducted mantle layer then breaks off, removing the pull force and thereby stopping the delamination and increasing horizontal compression of the lithosphere. The latter produces shortening of the formed orogen and the growth of relief. The modelling reveals an interesting burial/exhumation evolution of the sedimentary cover. During initial stages of continental subduction the sediments of the continental margin are dragged to the overriding plate base and are partially accreted at the deep part of the interplate zone (at 60-70 km-depth). These sediments remain there until the beginning of delamination during which the pressure between the subducted crust and the overriding plate increases. This results in squeezing the underplated sediments out. Part of them is extruded upwards along the interplate zone to about 30-km depth at an equivalent rate of 5-10 cm/year.  相似文献   

3.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

4.
Continental orogens on Earth can be classified into accretionary orogen and collisional orogen.Magmatism in orogens occurs in every periods of an orogenic cycle,from oceanic subduction,continental collision to orogenic collapse.Continental collision requires the existence of prior oceanic subduction zone.It is generally assumed that the prerequisite of continental deep subduction is oceanic subduction and its drag force to the connecting passive-margin continental lithosphere during continental collision.Continental subduction and collision lead to the thickening and uplift of crust,but the formation time of the related magmatism in orogens depends on the heating mechanism of lithosphere.The accretionary orogens,on the other hand,have no strong continental collision,deep subduction,no large scale of crustal thrusting,thickening and uplift,and no UHP eclogite-facies metamorphic rocks related to continental deep subduction.Even though arc crust could be significantly thickened during oceanic subduction,it is still doubtful that syn-or post-collisional magmatism would be generated.In collisional orogens,due to continental deep subduction and significant crustal thickening,the UHP metamorphosed oceanic and continental crusts will experience decompression melting during exhumation,generating syn-collisional magmatism.During the orogen unrooting and collapse,post-collisional magmatism develops in response to lithosphere extension and upwelling of asthenospheric mantle,marking the end of an orogenic cycle.Therefore,magmatism in orogens can occur during the continental deep subduction,exhumation and uplift after detachment of subducted oceanic crust from continental crust,and extensional collapse.The time span from continental collision to collapse and erosion of orogens(the end of orogenic cycle)is 50–85 Myr.Collisional orogens are the key sites for understanding continental deep subduction,exhumation,uplift and orogenic collapse.Magmatism in collisional orogens plays important roles in continental reworking and net growth.  相似文献   

5.

几乎所有大陆岩石层的减薄现象,可能都与海洋板块的俯冲作用相关,但是两者之间的内在联系迄今仍不十分明确,为此,我们设计了一系列包含洋-陆俯冲系统的二维数值模型,来探讨海洋板块的俯冲作用对上覆大陆岩石层变形行为的影响,尤其对大陆岩石层减薄效应的制约.模型结果表明,海洋板块俯冲过程中的地幔楔熔体对大陆岩石层地幔的热侵蚀以及由熔体上升所诱发的地幔局部对流的强烈扰动会导致上覆大陆岩石层的减薄效应.这种效应不仅表现在横向上的向陆内蔓延,还表现在垂向上的向浅部发展.且多类动力学参数都能制约大陆岩石层的减薄效应.具体地,随着汇聚速率和洋壳厚度的增加,上覆大陆岩石层在横向上的减薄范围越大,在垂向上的减薄程度也越深;而随着俯冲海洋板块年龄的增加,上覆大陆岩石层在横向上的减薄范围增大,但在垂向上的减薄程度会减小;随着上覆大陆岩石层厚度的增加,其横向减薄范围会减小,但在垂向上的减薄程度会加深.本文研究成果能为揭示华北克拉通减薄/破坏的动力学过程提供一定的理论参考依据.

  相似文献   

6.
The Red Sea continental margin (RSCM) corresponds to a wide hinge zone between Red Sea and Arabian plate. This margin has been studied through geological and geophysical observations primarily in regard to the evolution of Red Sea rift. This margin is characterized by occurrence of thin sediments, significant onshore uplift, tectonic subsidence of the offshore sedimentary basin, active faulting and seismicity. Studies indicate that sedimentary sequences of the margin are deformed by faults and folds resulti...  相似文献   

7.
大陆深俯冲及超高压变质作用是大陆动力学的重要研究内容,前人进行了系统的地质、地球物理观测以及数值模拟研究.然而,自然界中大陆板块的俯冲、碰撞及造山过程大部分具有明显的沿走向的差异性,这种典型的三维特征可能很大程度上依赖于会聚大陆板块的初始几何学和运动学特征.本文采用三维高分辨率的动力学数值模拟方法,建立了方形大陆板块和楔形大陆板块两种不同的俯冲-碰撞模型,并且俯冲大陆板块侧面与大洋俯冲带相邻.数值模拟结果揭示大洋板块可以持续地俯冲到地幔之中,而大陆板块俯冲到一定深度处,其前端的俯冲板块将发生断离,并进而造成残余的大陆板块俯冲角度的减小.方形大陆俯冲板块的断离深度约为150km,而楔形大陆俯冲板块的断离深度较大,约250~300km,这很大程度上取决于俯冲带中大洋板块的牵引力和大陆板块的负浮力之间的竞争关系.同时,无论方形还是楔形大陆板块俯冲模型中,板块断离后,侧向的大洋俯冲板块仍可以拖曳约60~70km宽的大陆边缘岩石圈持续向下俯冲,揭示了新西兰东部的洋-陆空间转换俯冲带的动力学机制.并且,数值模型与喜马拉雅造山带和秦岭—大别—苏鲁造山带进行了对比,进而对其高压-超高压岩石空间展布沿走向的差异性特征和机制提供了一定的启示.  相似文献   

8.
张晨  张双喜 《地震学报》2014,36(5):872-882
热传导系数和热膨胀系数是影响板块俯冲动力学过程的两个重要参数. 由于地球介质的不均匀性,热系数也会随深度发生变化.然而,这种变化在地球动力学模拟研究中往往被忽略.本文针对随温度变化的热传导系数和热膨胀系数, 模拟板块俯冲的动力学过程,分析热系数、黏度对板块俯冲形态的影响及其对应的地幔对流特征.结果表明,依温度变化的热传导系数和热膨胀系数会影响地幔温度及黏度分布,进而改变板块的俯冲角度;黏度是控制板块俯冲动力学演化过程的重要因素;地幔对流受黏度结构的影响,呈现分层对流及局部多个对流环等多种不同形态的对流场特征.  相似文献   

9.
Abstract Apatite and zircon fission-track (FT) analyses of the Shimanto accretionary complex and its vicinities, southwest Japan, unraveled the episodic material migration of the deep interiors of the accretionary complex. Apatite data with 100°C closure temperature (Te) generally indicate ~10 Ma cooling throughout the Shimanto complex. In contrast, zircon data with 260°C Te exhibit a wide range of apparent ages as a consequence of paleotemperature increase to the zircon partial annealing zone. In the Muroto and Kyushu regions, maximum temperatures tend to have been higher in the northern, older part of the complex, with indistinguishable temperature differences between coherent and melange units adjacent to each other. It thus suggests, along with vitrinite reflectance data, that older accretionary units occurring to the north sustain greater maximum burial during the accretion-burial-exhumation process. Zircon data suggest two cooling episodes: ~70 Ma cooling at widespread localities in the Cretaceous Shimanto Belt and Sambagawa Belt, and ~15 Ma cooling in the central Kii Peninsula. The former is consistent with 40Ar/39Ar cooling ages from the Sambagawa Belt, whereas the latter slightly predates the widespread 10 Ma apatite cooling ages. These data imply that the extensive material migration and exhumation took place in and around the Shimanto complex in Late Cretaceous as well as in Middle Miocene. Considering tectonic factors to control evolution of accretionary complexes, the episodic migration is best explained by accelerated accretion of sediments due to increased sediment influx at the ancient Shimanto trench, probably derived from massive volcano-plutonic complexes contemporaneously placed inland. Available geo- and thermochronologic data suggest that extensive magmatism triggered regional exhumation twice in the past 100 Ma, shedding new light on the cordilleran orogeny and paired metamorphism concepts.  相似文献   

10.
The Mawat ophiolite is part of the Mesozoic Neo‐Tethyan ophiolite belt of the Middle East and is located in the Zagros Imbricate Zone of Iraq. It represents fossil fragments of the Neo‐Tethyan oceanic lithosphere within the Alpine collisional system between the Arabian and Eurasia Plates. The first U–Pb zircon dating of the Daraban leucogranite from the Mawat ophiolite provides a 207Pb–206Pb age of 96.8 ± 6.0 Ma. The age is 59.0 ± 6.0 m.y. older than the previously published age of the Daraban leucogranite obtained by 40Ar–39Ar muscovite dating method. The U–Pb dating of magmatic zircons collected from the Daraban leucogranite, which intrudes into the Mawat ophiolite, reveals that melting of the pelagic sediment beneath the hot Zagros proto‐ophiolite in an intra‐oceanic arc environment led to anatexis at the subduction front and the generation of granitic melts at 96.8 ± 6.0 Ma, which were emplaced in the overlaying mantle wedge. This process was a response to the initial formation of the Neo‐Tethys ophiolite above a northeast‐dipping intra‐oceanic subduction zone at 96.8 ± 6.0 Ma. Published 40Ar–39Ar muscovite dating from the same leucogranite dike yields plateau ages of 37.7 ± 0.3 Ma, reflecting that the age was reset during the Arabia–Eurasia continental collision. Therefore, the bimodal age populations from the granitic intrusion in the Mawat ophiolite preserve a record of the subduction to the collision cycle of the Zagros Orogenic Belt. The 59.0 ± 6.0 m.y. age difference from the Daraban leucogranite represents the duration of the subduction‐collision cycle of the Zagros Orogenic Belt in the Kurdistan region of Iraq and the time span for the closure of the Neo‐Tethys Ocean along the northern margin of the Arabian plate.  相似文献   

11.
Xiaoming  Li  Guilun  Gong  Xiaoyong  Yang  Qiaosong  Zeng 《Island Arc》2010,19(1):120-133
The Yanji area, located at the border of China, Russia, and Korea, where the Phanerozoic granitoids have been widely exposed, was considered part of the orogenic collage between the North China Block in the south and the Jiamusi–Khanka Massifs in the northeast. In this study, the cooling and inferred uplift and denudation history since the late Mesozoic are intensively studied by carrying out apatite and zircon fission-track analyses, together with electron microprobe analyses (EMPA) of chemical compositions of apatite from the granitoid samples in the Yanji area. The results show that: (i) zircon and apatite fission-track ages range 91.7–99.6 Ma and 76.5–85.4 Ma, respectively; (ii) all apatite fission-track length distributions are unimodal and yield mean lengths of 12–13.2 µm, and the apatites are attributed to chlorine-bearing fluorapatite as revealed by EMPA results; and (iii) the thermal history modeling results based on apatite fission-track grain ages and length distributions indicate that the time–temperature paths display similar patterns and the cooling has been accelerated for each sample since ca 15 Ma. Thus, we conclude that sequential cooling, involving two rapid (95–80 Ma and ca 15–0 Ma) and one slow (80–15 Ma) cooling, has taken place through the exhumation of the Yanji area since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35°C/km. Combined with the tectonic setting, this exhumation is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the late Cretaceous.  相似文献   

12.
张裂大陆边缘形成演化的数值模拟   总被引:6,自引:5,他引:1       下载免费PDF全文
陈林  宋海斌  许鹤华  刘洪 《地球物理学报》2009,52(11):2781-2787
本文在等黏态角落流模型的基础上,建立了上升离散地幔流场,将该流场作用于大陆岩石圈底部,能解释岩石圈减薄、裂解并最终形成海底扩张和张裂大陆边缘等一系列过程.数值模拟的结果表明,岩石圈在上升离散地幔流的作用下发生依赖于深度的伸展减薄,表现为不同深度的拉张因子不同,地表热流显著升高,热扰动引起的均衡调整造成地表沉降,同时热扰动造成岩石圈流变强度尤其是在变形中心处显著减小,脆性变形临界深度变浅,而韧性变形范围扩大.在上升离散地幔流的持续作用下最终导致大陆裂解,岩石圈地幔出露,形成海底扩张和张裂大陆边缘.  相似文献   

13.
Collision, subduction and accretion events in the Philippines: A synthesis   总被引:7,自引:0,他引:7  
Abstract The Philippines preserves evidence of the superimposition of tectonic processes in ancient and present‐day collision and subduction zone complexes. The Baguio District in northern Luzon, the Palawan–Central Philippine region and the Mati–Pujada area in southeastern Mindanao resulted from events related to subduction polarity reversal leading to trench initiation, continent‐arc collision and autochthonous oceanic lithosphere emplacement, respectively. Geological data on the Baguio District in Northern Luzon reveal an Early Miocene trench initiation for the east‐dipping Manila Trench. This followed the Late Oligocene cessation of subduction along the west‐dipping proto‐East Luzon Trough. The Manila Trench initiation, which is modeled as a consequence of the counter‐clockwise rotation of Luzon, is attributed to the collision of the Palawan microcontinental block with the Philippine Mobile Belt. In the course of rotation, Luzon onramped the South China Sea crust, effectively converting the shear zone that bounded them into a subduction zone. Several collision‐related accretionary complexes (e.g. Romblon, Mindoro) are present in the Palawan–Central Philippine region. The easternmost collision zone boundary is located east of the Romblon group of islands. The Early Miocene southwestward shift of the collision boundary from Romblon to Mindoro started to end by the Pliocene. Continuous interaction between the Palawan microcontinental block and the Philippine Mobile Belt is presently taken up again along the collisional boundary east of the Romblon group of islands. The Mati–Pujada Peninsula area, on the other hand, is underlain by the Upper Cretaceous Pujada Ophiolite. This supra‐subduction zone ophiolite is capped by chert and pelagic limestones which suggests its derivation from a relatively deep marginal basin. The Pujada Ophiolite could be a part of a proto‐Molucca Sea plate. The re‐interpretation of the geology and tectonic settings of the three areas reaffirm the complex geodynamic evolution of the Philippine archipelago and addresses some of its perceived geological enigmas.  相似文献   

14.
Flat and steep subduction are end-member modes of oceanic subduction zones with flat subduction occurring at about 10% of the modern convergent margins and mainly around the Pacific. Continental (margin) subduction normally follows oceanic subduction with the remarkable event of formation and exhumation of high- to ultrahigh-pressure (HP–UHP) metamorphic rocks in the continental subduction/collision zones. We used 2D thermo-mechanical numerical models to study the contrasting subduction/collision styles as well as the formation and exhumation of HP–UHP rocks in both flat and steep subduction modes. In the reference flat subduction model, the two plates are highly coupled and only HP metamorphic rocks are formed and exhumed. In contrast, the two plates are less coupled and UHP rocks are formed and exhumed in the reference steep subduction model. In addition, faster convergence of the reference flat subduction model produces extrusion of UHP rocks. Slower convergence of the reference flat subduction model results in two-sided subduction/collision. The higher/lower convergence velocities of the reference steep subduction model can both produce exhumation of UHP rocks. A comparison of our numerical results with the Himalayan collisional belt suggests two possible scenarios: (1) A spatially differential subduction/collision model, which indicates that steep subduction dominates in the western Himalaya, while flat subduction dominates in the extensional central Himalaya; and (2) A temporally differential subduction/collision model, which favors earlier continental plate (flat) subduction with high convergence velocity in the western Himalaya, and later (flat) subduction with relatively low convergence velocity in the central Himalaya.  相似文献   

15.
The island of Crete in the forearc of the Hellenic subduction zone has a rugged topography with local relief exceeding 2 km. Based on the elevation of marine shorelines, rates of rock uplift during the Late Holocene were previously estimated to range between 1 and 4 mm/a in different parts of the island. These rates may, however, not be representative for longer timescales, because subduction earthquakes with up to 9 m of vertical coseismic displacement have affected Crete in the Late Holocene. Here we use a well preserved sequence of marine terraces near Kato Zakros in eastern Crete to determine the rate of rock uplift over the last ∼600 ka. Field investigations and topographic profiles document a flight of more than 13 marine bedrock terraces that were carved into limestones of the Tripolitza unit. Preliminary age constraints for the terraces were obtained by 10Be exposure dating of rare quartz-bearing sandstone clasts, which are present on some terraces. The 10Be ages of these samples, which have been corrected for an inherited nuclide component, yielded exposure ages between ∼100 ka and zero. Combined with geomorphologic evidence the two oldest 10Be ages suggest that the terraces T4 and T5, with shoreline angles at an elevation of ∼68 and ∼76 m above sea level, respectively, formed during the marine isotope stage 5e about 120 ka ago. The correlation of the higher terraces (T6 to T13) with regional sea-level highstands indicates sustained rock uplift at a rate of ∼0.5 m/ka since at least ∼600 ka. As normal faulting has dominated the tectonics of Crete during the last several million years, upper crustal shortening can be ruled out as a cause for rock uplift. We argue that the sustained uplift of the island results from the continuous underplating of sediments, which are transferred from the subducting African plate to the base of the crust beneath Crete.  相似文献   

16.
The mechanism by which high-pressure metamorphosed continental material is emplaced at high structural levels is a major unsolved problem of collisional orogenesis. We suggest that the emplacement results from partial subduction of the continental margin which, because of its high flexural rigidity, produces a rapid change in the trajectory of the descending slab. We assume a two-fold increase in effective elastic thickness of the lithosphere as the continental margin approaches the subduction zone, and calculate the flexural profile of a thin plate for progressive downward migration of the zone of increased rigidity. We assess the effect of changes in the flexural profile on the overlying accretionary prism and mantle wedge as the continent approaches by estimating the extra stresses that are imposed on the wedge due to the bending moment exerted by the continental part of the plate. The wedges overlying the subduction zones, and the subducting slab itself, experience substantial extra compressional stress at depths of around 100 km, and extensional stress at shallower depths, as the continental margin passes through the zone of maximum curvature. The magnitudes of such extra stresses are probably adequate to effect significant deformation of the wedge and/or the descending plate, and are experienced in a time interval of less than 5 m.y. for typical subduction rates. The spatial variation of yield stresses in the region of the wedge and descending slab indicates that much of this deformation may be taken up in the crustal part of the descending slab, which is the weakest region in the deeper parts of the subduction zone. This may result in rapid upward migration of the crust of the partially subducted continental margin, against the flow of subduction. High-pressure metamorphosed terranes emplaced by the mechanism envisaged in this paper would be bounded by thrust faults below and normal faults above. Movement on the faults would have been coeval, and would have resulted in rapid unroofing of the high-pressure terranes, synchronous with arrival of the continental margin at the subduction zone and, therefore, relatively early in the history of a collisional orogen.  相似文献   

17.
运用数值模拟的方法对在冲绳海槽产生9.0级地震,并引发海啸的过程和海啸波在东海浅水大陆架地形上的传播过程进行研究.模拟的结果表明,数值模拟产生的波浪符合海啸波的特点,东海浅水大陆架适合海啸波的传播.  相似文献   

18.
多震源地震正演数值模拟技术   总被引:2,自引:0,他引:2  
常规地震采集技术因受相邻时间激发炮之间时间间隔的制约而存在采集周期过长,采集成本过高的问题,而多震源同步激发地震采集技术可以克服这方面的缺陷,但存在着波场过于复杂的问题,地震正演模拟技术可以帮助我们提高对这种复杂波场的认识水平,为此采用2D弹性波方程交错网格高阶有限差分格式,开发了多震源同步激发波场正演数值模拟技术,能够模拟任意多个同步激发震源的弹性波波场,震源函数可以是雷克子波,也可以是可控震源扫描信号,且同步激发震源之间可以有随机时差.模型试算结果分析表明,该技术既是一项高精度的多震源正演模拟技术,也是一项高效率的地震正演数值模拟技术.  相似文献   

19.
汤加-克马德克俯冲带是太平洋板块向澳大利亚板块俯冲碰撞的动力作用区,是全球俯冲带动力学研究的热点区域.本研究基于EHB地震目录,对汤加-克马德克俯冲带(18.5°S-28.5°S)区域进行平面拟合,得到该范围内俯冲带走向约为196°,倾角约为48°;利用该俯冲带研究区域内Global CMT目录,对不同位置、不同深度进行区域应力张量反演,得到汤加-克马德克俯冲带研究区内精细的应力图像.结果显示:(1) 俯冲带浅部(60~300 km)应力结构非均匀特征明显,主应力轴倾伏角变化多样,并且最大主压应力轴方位在24°S左右发生明显偏转,我们推测这可能与洋底构造路易斯维尔海链俯冲有关;(2)中部(300~500 km)最大主压、主张应力轴由北向南逐渐发生偏转,这可能与由北向南流动的地幔流对俯冲板片产生推挤作用有关,并且这种推挤作用向南逐渐减弱;(3)深部(500~700 km)最大主压应力轴沿俯冲方向分布;(4)本文的结果还发现了主俯冲带深部西侧"偏移"板片与主俯冲带应力结构不同,表明"偏移"板片与主俯冲带是分离的.  相似文献   

20.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号