首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Haze and fog are both low visibility events, but with different physical properties. Haze is caused by the increase of aerosol loading or the hygroscopic growth of aerosol at high relative humidity, whereas visibility degradation in fog is due to the light scattering of fog droplets, which are transited from aerosols via activation. Based on the difference of physical properties between haze and fog, this study presents a novel method to distinguish haze and fog using real time measurements of PM2.5, visibility, and relative humidity. In this method, a criterion can be developed based on the local historical data of particle number size distributions and aerosol hygroscopicity. Low visibility events can be classified into haze and fog according to this criterion.  相似文献   

2.
In January 2013,a severe fog and haze event(FHE)of strong intensity,long duration,and extensive coverage occurred in eastern China.The present study investigates meteorological conditions for this FHE by diagnosing both its atmospheric background fields and daily evolution in January 2013.The results show that a weak East Asian winter monsoon existed in January2013.Over eastern China,the anomalous southerly winds in the middle and lower troposphere are favorable for more water vapor transported to eastern China.An anomalous high at 500 hPa suppresses convection.The weakened surface winds are favorable for the fog and haze concentrating in eastern China.The reduction of the vertical shear of horizontal winds weakens the synoptic disturbances and vertical mixing of atmosphere.The anomalous inversion in near-surface increases the stability of surface air.All these meteorological background fields in January 2013 were conducive to the maintenance and development of fog and haze over eastern China.The diagnosis of the daily evolution of the FHE shows that the surface wind velocity and the vertical shear of horizontal winds in the middle and lower troposphere can exert dynamic effects on fog and haze.The larger(smaller)they are,the weaker(stronger)the fog and haze are.The thermodynamic effects include stratification instability in middle and lower troposphere and the inversion and dew-point deficit in near-surface.The larger(smaller)the stratification instability and the inversion are,the stronger(weaker)the fog and haze are.Meanwhile,the smaller(larger)the dewpoint deficit is,the stronger(weaker)the fog and haze are.Based on the meteorological factors,a multi-variate linear regression model is set up.The model results show that the dynamic and thermodynamic effects on the variance of the fog and haze evolution are almost the same.The contribution of the meteorological factors to the variance of the daily fog and haze evolution reaches 0.68,which explains more than 2/3 of the variance.  相似文献   

3.
申彦波  王彪 《地球物理学报》2011,54(6):1457-1465
太阳是地球表层的最终能量来源,地面太阳辐射的变化会深刻影响地球的气候变化.本文利用中国东南地区14个气象台站1961~2008年总辐射和气温的同步观测资料,分析了近50年该地区地面太阳辐射的变化对气温变化的可能影响.结果表明,1961~1989年期间,该地区的地面太阳辐射显著减弱,所引起的气温下降超过了其他因素的增温效...  相似文献   

4.
Huge amounts of organic chlorine pesticides (OCPs) had been applied to agricultural area in China during 1950s―1980s, and resulted in serious environmental pollution because of their tendency to accumulate in organisms and persistence in the environment, which caused highly risk potential to the ecosystem and long-term residue in the polluted area. There are still higher HCHs residues in the environment even 20 years after the prohibition of HCHs from 1984[1,2]. It is necessary to investi…  相似文献   

5.
上海近50年气温变化与城市化发展的关系   总被引:10,自引:1,他引:10       下载免费PDF全文
根据上海地区2个气象站近50年的年均气温数据,采用回归分析、滑动平均和Mann\|Kendall检验法研究上海地区气温的年代际变化与跃变,城郊温差的年际变化;采用趋势拟合与相关分析,研究城郊温差与城市人口、GDP、能源消耗量、建成区面积和住宅竣工面积等各项城市发展指标的关系.结果表明:(1)近50年来,上海地区年均气温缓慢上升,20世纪90年代后城郊温差呈锯齿状上升趋势,若以徐家汇代表城区,奉贤代表郊区,则近50年来,城郊温差增温率为0.23℃/10a.(2)1989~1990年为上海城区气温的跃变年份,而郊区的气温跃变出现在20世纪90年代中期.(3)各项城市发展指标均与上海城郊温差有着显著的相关性,表明它们与上海城市热岛的发展关系密切,其中,住宅建设是上海城市热岛最主要的驱动因素,城市人口和经济发展也具有重要影响.  相似文献   

6.
Land use and land cover in China have changed greatly during the past 300 a, indicated by the rapid abrupt decrease of forest land area and the rapid increase of cropland area, which can affect terrestrial carbon cycle greatly. The first-hand materials are used to analyze main characteristics for land use and land cover changes in China during the study period. The following conclusions can be drawn from this study. The cropland area in China kept increasing from 60.78×106 hm2 in 1661 to 96.09×106 hm2 in 1998. Correspondingly, the forest land area decreased from 248.13×106 hm2 in 1700 to 109.01×106 hm2 in 1949. Affected by such changes, the terrestrial ecosystem carbon storage decreased in the mean time. Car-bon lost from land use and land cover changes mainly consist of the loss from vegetation biomass and soil. In the past 300 a, about 3.70 PgC was lost from vegetation biomass, and emissions from soil ranged from 0.80 to 5.84 PgC. The moderate evaluation of soil losses was 2.48 PgC. The total loss from vegetation and soil was between 4.50 and 9.54 PgC. The moderate and optimum evaluation was 6.18 PgC. Such carbon losses distribution varied spatially from region to region. Carbon lost more significantly in Northeast China and Southwest China than in other regions, because losses of forest land in these two regions were far greater than in the other regions during the past 300 a. And losses of carbon in the other regions were also definite, such as Inner Mongolia, the western part of South China, the Xinjiang Uygur Autonomous Region, and the Qinghai-Tibet Plateau. But the carbon lost very little from the traditional agricultural regions in China, such as North China and East China. Studies on the relationship between land use and land cover change and carbon cycle in China show that the land use activities, especially those related to agriculture and forest management, began to affect terrestrial carbon storage positively in recent years.  相似文献   

7.
为探讨非生物因子和生物因子对水体叶绿素a(Chl.a)浓度变动的相对重要性,对芜湖市内的汀棠湖(每半月1次)和镜湖(每4天或7天1次)进行高频采样,分析理化因子及浮游动物密度与Chl.a浓度间的关系.结果表明,从全年来看,2个湖泊的Chl.a浓度均与水温和透明度间分别呈现显著的正相关性和负相关性,与浮游动物密度均无显著相关性;镜湖Chl.a浓度随着总磷浓度和氮磷比的增加分别呈上升和降低趋势.从季节来看,冬季两湖中的Chl.a浓度最低,轮虫密度与此阶段镜湖中藻类Chl.a总浓度和小型藻类的Chl.a浓度间均呈显著负相关,且其对上述两类Chl.a浓度变动的影响程度最大,表明轮虫对藻类的牧食效应降低了冬季镜湖中的Chl.a浓度.从各环境因子对Chl.a浓度变动影响的相对权重来看,除了冬季的镜湖外,2个湖泊中的两类Chl.a浓度均与透明度的关系最密切,且均随着透明度的上升而降低,暗示了透明度可作为预测小型封闭性浅水湖泊中Chl.a浓度的简便指标.  相似文献   

8.
AnalysisoftherisingandsinkingmovementofthecrustinQinghai-XizangPlateau,ChinaZi-LingLU(吕梓龄),ZhengZHUANG(庄真),Zhu-WuFU(傅竹武),Jia-...  相似文献   

9.
利用1958~2002年的NCEP-R1和ERA-40逐日再分析资料以及中国160站点月平均降水资料探讨了亚洲夏季风水汽输送的年际年代际变化及其与中国降水异常的关系. 分析结果表明,亚洲夏季风水汽输送和中国夏季降水的异常主模态呈现显著的准两年变化周期. 当南亚夏季风纬向水汽输送偏强(弱)时,东亚—西北太平洋地区水汽输送的偶极型异常有利于长江中下游地区和江淮流域的水汽辐合负(正)异常与华南和华北地区的水汽辐合正(负)异常,从而引起中国东部的经向三极子雨型,即长江中下游地区和江淮流域的偏旱(涝)与华南和华北地区的偏涝(旱). 1970s年代末之后,亚洲夏季风水汽输送的年代际减弱与西北太平洋地区水汽输送的偶极型异常相配合,导致长江中下游地区的持续偏涝与华南和华北地区的持续偏旱. 从中国夏季降水异常与水汽通量辐合异常的同相对应关系来看,ERA-40资料对亚洲夏季风水汽输送年际年代际变化的描述能力强于NCEP-R1资料.  相似文献   

10.
Based on the hydrological and meteorological data recorded for the northern and southern headstreams of the Tarim River over the last 50 years, this paper analyses the variation characteristics of high‐flow and low‐flow indexes of annual runoff, air temperature and precipitation using a non‐parametric test. Additionally, this paper also studies the correlations between these three time series on multiple time scales for both northern and southern headstreams employing wavelet analysis. The results show the following: (i) the annual runoff and air temperature had significant increasing trends, whereas precipitation had a non‐significant increasing trend for the northern and southern headstreams. (ii) Abrupt changes appeared in precipitation in the north and south in 1990 and 1986, as well as in high‐flow and low‐flow indexes of annual runoff in 1993 and in air temperature in 1996. (iii) In the case of the northern headstreams, there was significant periodicity of 6 years in both high‐flow and low‐flow indexes and air temperature and of 3 and 8 years in precipitation. In the case of the southern headstreams, there was significant periodicity of 3 and 9 years in high‐flow and low‐flow indexes, 5 years in air temperature, and 5 and 8 years in precipitation. (iv) The high‐flow and low‐flow indexes in the headstreams of the Tarim River are closely related to the air temperature and precipitation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号