首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   

2.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

3.
Annually integrated air-water CO2 flux data in 44 coastal environments were compiled from literature. Data were gathered in 8 major ecosystems (inner estuaries, outer estuaries, whole estuarine systems, mangroves, salt marshes, coral reefs, upwelling systems, and open continental shelves), and up-scaled in the first attempt to integrate air-water CO2 fluxes over the coastal ocean (26×106 km2), taking into account its geographical and ecological diversity. Air-water CO2 fluxes were then up-scaled in global ocean (362×106 km2) using the present estimates for the coastal ocean and those from Takahashi et al. (2002) for the open ocean (336×106 km2). If estuaries and salt marshes are not taken into consideration in the up-scaling, the coastal ocean behaves as a sink for atmospheric CO2(−1.17 mol C m−2 yr−1) and the uptake of atmospheric CO2 by the global ocean increases by 24% (−1.93 versus −1.56 Pg C yr−1). The inclusion of the coastal ocean increases the estimates of CO2 uptake by the global ocean by 57% for high latitude areas (−0.44 versus −0.28 Pg C yr−1) and by 15% for temperate latitude areas (−2.36 versus −2.06 Pg C yr−1) At subtropical and tropical latitudes, the contribution from the coastal ocean increases the CO2 emission to the atmosphere from the global oceam by 13% (0.87 versus 0.77 Pg C yr−1). If estuaries and salt marshes are taken into consideration in the upscaling, the coastal ocean behaves as a source for atmospheric CO2 (0.38 mol C m−2 yr−1) and the uptake of atmospheric CO2 from the global ocean decreases by 12% (−1.44 versus −1.56 Pg C yr−1) At high and subtropical and tropical latitudes, the coastal ocean behaves as a source for atmospheric CO2 but at temperate latitudes, it still behaves as a moderate CO2 sink. A rigorous up-scaling of air-water CO2 fluxes in the coastal ocean is hampered by the poorly constrained estimate of the surface area of inner estuaries. The present estimates clearly indicate the significance of this biogeochemically, highly active region of the biosphere in the global CO2 cycle.  相似文献   

4.
The paired chemical reactions, Ca2+ + 2HCO3 ? ? CaCO3 + CO2 + H2O, overestimate the ratio of CO2 flux to CaCO3 flux during the precipitation or dissolution of CaCO3 in seawater. This ratio, which has been termed ??, is about 0.6 in surface seawater at 25°C and at equilibrium with contemporary atmospheric CO2 and increases towards 1.0 as seawater cools and pCO2 increases. These conclusions are based on field observations, laboratory experiments, and equilibrium calculations for the seawater carbonate system. Yet global geochemical modeling indicates that small departures of ?? from 1.0 would cause dramatic, rapid, and unrealistic change in atmospheric CO2. ?? can be meaningfully calculated for a water sample whether or not it is in equilibrium with the atmosphere. The analysis presented here demonstrates that the atmospheric CO2 balance can be maintained constant with respect to seawater CaCO3 reactions if one considers the difference between CaCO3 precipitation and burial and differing values for ?? (both <1.0) in regions of precipitation and dissolution within the ocean.  相似文献   

5.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   

6.
The spatial and temporal variations of the flux of CO2 were determined during 2007 in the Recife estuarine system (RES), a tropical estuary that receives anthropogenic loads from one of the most populated and industrialized areas of the Brazilian coast. The RES acts as a source of nutrients (N and P) for coastal waters. The calculated CO2 fluxes indicate that the upstream inputs of CO2 from the rivers are largely responsible for the net annual CO2 emission to the atmosphere of +30 to +48 mmol m?2 day?1, depending on the CO2 exchange calculation used, which mainly occurs during the late austral winter and early summer. The observed inverse relationship between the CO2 flux and the net ecosystem production (NEP) indicates the high heterotrophy of the system (except for the months of November and December). The NEP varies between ?33 mmol m?2 day?1 in summer and ?246 mmol m?2 day?1 in winter. The pCO2 values were permanently high during the study period (average ~4,700 μatm) showing a gradient between the inner (12,900 μatm) and lower (389 μatm) sections on a path of approximately 30 km. This reflects a state of permanent pollution in the basin due to the upstream loading of untreated domestic effluents (N/P?=?1,367:6 μmol kg?1 and pH?=?6.9 in the inner section), resulting in the continuous mineralization of organic material by heterotrophic organisms and thereby increasing the dissolved CO2 in estuarine waters.  相似文献   

7.
Groundwater may be highly enriched in dissolved carbon species, but its role as a source of carbon to coastal waters is still poorly constrained. Exports of deep and shallow groundwater-derived dissolved carbon species from a small subtropical estuary (Korogoro Creek, Australia, latitude ?31.0478°, longitude 153.0649°) were quantified using a radium isotope mass balance model (233Ra and 224Ra, natural groundwater tracers) under two hydrological conditions. In addition, air-water exchange of carbon dioxide and methane in the estuary was estimated. The highest carbon inputs to the estuary were from deep fresh groundwater in the wet season. Most of the dissolved carbon delivered by groundwater and exported from the estuary to the coastal ocean was in the form of dissolved inorganic carbon (DIC; 687 mmol m?2 estuary day?1; 20 mmol m?2 catchment day?1, respectively), with a large export of alkalinity (23 mmol m?2 catchment day?1). Average water to air flux of CO2 (869 mmol m?2 day?1) and CH4 (26 mmol m?2 day?1) were 5- and 43-fold higher, respectively, than the average global evasion in estuaries due to the large input of CO2- and CH4-enriched groundwater. The groundwater discharge contribution to carbon exports from the estuary for DIC, dissolved organic carbon (DOC), alkalinity, CO2, and CH4 was 22, 41, 3, 75, and 100 %, respectively. The results show that CO2 and CH4 evasion rates from small subtropical estuaries surrounded by wetlands can be extremely high and that groundwater discharge had a major role in carbon export and evasion from the estuary and therefore should be accounted for in coastal carbon budgets.  相似文献   

8.
Rising atmospheric pCO2 and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil’s Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO2 levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil’s Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO2. The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m−2 h−1. On a yearly basis, this range corresponds to 175–701 g CaCO3 m−2 year−1; the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m−2 year−1. Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO2 arising from burning of fossil fuels.  相似文献   

9.
Release of CO2 from surface ocean water owing to precipitation of CaCO3 and the imbalance between biological production of organic matter and its respiration, and their net removal from surface water to sedimentary storage was studied by means of a quotient θ = (CO2 flux to the atmosphere)/(CaCO3 precipitated). θ depends not only on water temperature and atmospheric CO2 concentration but also on the CaCO3 and organic carbon masses formed. In CO2 generation by CaCO3 precipitation, θ varies from a fraction of 0.44 to 0.79, increasing with decreasing temperature (25 to 5°C), increasing atmospheric CO2 concentration (195–375 ppmv), and increasing CaCO3 precipitated mass (up to 45% of the initial DIC concentration in surface water). Primary production and net storage of organic carbon counteracts the CO2 production by carbonate precipitation and it results in lower CO2 emissions from the surface layer. When atmospheric CO2 increases due to the ocean-to-atmosphere flux rather than remaining constant, the amount of CO2 transferred is a non-linear function of the surface layer thickness because of the back-pressure of the rising atmospheric CO2. For a surface ocean layer approximated by a 50-m-thick euphotic zone that receives input of inorganic and organic carbon from land, the calculated CO2 flux to the atmosphere is a function of the CaCO3 and Corg net storage rates. In general, the carbonate storage rate has been greater than that of organic carbon. The CO2 flux near the Last Glacial Maximum is 17 to 7×1012 mol/yr (0.2–0.08 Gt C/yr), reflecting the range of organic carbon storage rates in sediments, and for pre-industrial time it is 38–42×1012 mol/yr (0.46–0.50 Gt C/yr). Within the imbalanced global carbon cycle, our estimates indicate that prior to anthropogenic emissions of CO2 to the atmosphere the land organic reservoir was gaining carbon and the surface ocean was losing carbon, calcium, and total alkalinity owing to the CaCO3 storage and consequent emission of CO2. These results are in agreement with the conclusions of a number of other investigators. As the CO2 uptake in mineral weathering is a major flux in the global carbon cycle, the CO2 weathering pathway that originates in the CO2 produced by remineralization of soil humus rather than by direct uptake from the atmosphere may reduce the relatively large imbalances of the atmosphere and land organic reservoir at 102–104-year time scales.  相似文献   

10.
Weathering of rocks that regulate the water chemistry of the river has been used to evaluate the CO2 consumption rate which exerts a strong influence on the global climate. The foremost objective of the present research is to estimate the chemical weathering rate (CWR) of the continental water in the entire stretch of Brahmaputra River from upstream to downstream and their associated CO2 consumption rate. To establish the link between the rapid chemical weathering and thereby enhance CO2 drawdown from the atmosphere, the major ion composition of the Brahmaputra River that drains the Himalaya has been obtained. Major ion chemistry of the Brahmaputra River was resolved on samples collected from nine locations in pre-monsoon, monsoon and post-monsoon seasons for two cycles: cycle I (2011–2012) and cycle II (2013–2014). The physico-chemical parameters of water samples were analysed by employing standard methods. The Brahmaputra River was characterized by alkalinity, high concentration of Ca2+ and HCO3 ? along with significant temporal variation in major ion composition. In general, it was found that water chemistry of the river was mainly controlled by rock weathering with minor contributions from atmospheric and anthropogenic sources. The effective CO2 pressure (log\({{\text{P}}_{{\text{C}}{{\text{O}}_{\text{2}}}}}\)) for pre-monsoon, monsoon and post-monsoon has been estimated. The question of rates of chemical weathering (carbonate and silicate) was addressed by using TDS and run-off (mm year?1). It has been found that the extent of CWR is directly dependent on the CO2 consumption rate which may be further evaluated from the perspective of climate change mitigation The average annual CO2 consumption rate of the Brahmaputra River due to silicate and carbonate weathering was found to be 0.52 (×106 mol Km?2 year?1) and 0.55 (×106 mol Km?2 year?1) for cycle I and 0.49 (×106 mol Km?2 year?1) and 0.52 (×106 mol Km?2 year?1) for cycle II, respectively, which were significantly higher than that of other Himalayan rivers. Estimation of CWR of the Brahmaputra River indicates that carbonate weathering largely dominates the water chemistry of the Brahmaputra River.  相似文献   

11.
The marine shelf areas in subtropical and tropical regions represent only 35% of the total shelf areas globally, but receive a disproportionately large amount of water (65%) and sediment (58%) discharges that enter such environments. Small rivers and/or streams that drain the mountainous areas in these climatic zones deliver the majority of the sediment and nutrient inputs to these narrow shelf environments; such inputs often occur as discrete, episodic introductions associated with storm events. To gain insight into the linked biogeochemical behavior of subtropical/tropical mountainous watershed-coastal ocean ecosystems, this work describes the use of a buoy system to monitor autonomously water quality responses to land-derived nutrient inputs and physical forcing associated with local storm events in the coastal ocean of southern Kaneohe Bay, Oahu, Hawaii, USA. The data represent 2.5 years of near-real time observations at a fixed station, collected concurrently with spatially distributed synoptic sampling over larger sections of Kaneohe Bay. Storm events cause most of the fluvial nutrient, particulate, and dissolved organic carbon inputs to Kaneohe Bay. Nutrient loadings from direct rainfall and/or terrestrial runoff produce an immediate increase in the N:P ratio of bay waters up to values of 48 and drive phytoplankton biomass growth. Rapid uptake of such nutrient subsidies by phytoplankton causes rapid declines of N levels, return to N-limited conditions, and subsequent decline of phytoplankton biomass over timescales ranging from a few days to several weeks, depending on conditions and proximity to the sources of runoff. The enhanced productivity may promote the drawing down of pCO2 and lowering of surface water column carbonate saturation states, and in some events, a temporary shift from N to P limitation. The productivity-driven CO2 drawdown may temporarily lead to air-to-sea transfer of atmospheric CO2 in a system that is on an annual basis a source of CO2 to the atmosphere due to calcification and perhaps heterotrophy. Storms may also strongly affect proximal coastal zone pCO2 and hence carbonate saturation state due to river runoff flushing out high pCO2 soil and ground waters. Mixing of the CO2-charged water with seawater causes a salting out effect that releases CO2 to the atmosphere. Many subtropical and tropical systems throughout the Pacific region are similar to Kaneohe Bay, and our work provides an important indication of the variability and range of CO2 dynamics that are likely to exist elsewhere. Such variability must be taken into account in any analysis of the direction and magnitude of the air?Csea CO2 exchange for the integrated coastal ocean, proximal and distal. It cannot be overemphasized that this research illustrates several examples of how high frequency sampling by a moored autonomous system can provide details about ecosystem responses to stochastic atmospheric forcing that are commonly missed by traditional synoptic observational approaches. Finally, the work exemplifies the utility of combining synoptic sampling and real-time autonomous observations to elucidate the biogeochemical and physical responses of coastal subtropical/tropical coral reef ecosystems to climatic perturbations.  相似文献   

12.
The Service d’Observation de la Rade de Villefranche-sur-Mer is designed to study the temporal variability of hydrological conditions as well as the abundance and composition of holo- and meroplankton at a fixed station in this bay of the northwest Mediterranean. The weekly data collected at this site, designated as “Point B” since 1957, represent a long-term time series of hydrological conditions in a coastal environment. Since 2007, the historical measurements of hydrological and biological conditions have been complemented by measurements of the CO2–carbonic acid system parameters. In this contribution, CO2–carbonic acid system parameters and ancillary data are presented for the period 2007–2011. The data are evaluated in the context of the physical and biogeochemical processes that contribute to variations in CO2 in the water column and exchange of this gas between the ocean and atmosphere. Seasonal cycles of the partial pressure of CO2 in seawater (pCO2) are controlled principally by variations in temperature, showing maxima in the summer and minima during the winter. Normalization of pCO2 to the mean seawater temperature (18.5 °C), however, reveals an apparent reversal of the seasonal cycle with maxima observed in the winter and minima in the summer, consistent with a biogeochemical control of pCO2 by primary production. Calculations of fluxes of CO2 show this area to be a weak source of CO2 to the atmosphere during the summer and a weak sink during the winter but near neutral overall (range ?0.3 to +0.3 mmol CO2 m?2 h?1, average 0.02 mmol CO2 m?2 h?1). We also provide an assessment of errors incurred from the estimation of annual fluxes of CO2 as a function of sampling frequency (3-hourly, daily, weekly), using data obtained at the Hawaii Kilo Nalu coastal time-series station, which shows similar behavior to the Point B location despite significant differences in climate and hydrological conditions and the proximity of a coral reef ecosystem.  相似文献   

13.
Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.  相似文献   

14.
During the formation and development of glacial meltwater runoff, hydrochemical erosion is abundant, especially the hydrolysis of K/Na feldspar and carbonates, which can consume H+ in the water, promote the formation of bicarbonate by dissolving atmospheric CO2, and affect the regional carbon cycle. From July 21, 2015, to July 18, 2017, the CO2 concentration and flux were observed by the eddy covariance (EC) method in the relatively flat and open moraine cover area of Koxkar Glacier in western Mt. Tianshan, China. We found that: (1) atmospheric CO2 fluxes ranged from ??408.95 to 81.58 mmol m?2 day?1 (average ? 58.68 mmol m?2 day?1), suggesting that the study area is a significant carbon sink, (2) the CO2 flux footprint contribution areas were primarily within 150 m of the EC station, averaging total contribution rates of 93.30%, 91.39%, and 90.17% of the CO2 flux in the snow accumulation, snow melting, and glacial melting periods, respectively. Therefore, the contribution areas with significant influences on CO2 flux observed at EC stations were concentrated, demonstrating that grassland CO2 flux around the glaciers had little effect at the EC stations, (3) in the predominant wind direction, under stable daytime atmospheric stratification, the measurement of CO2 flux, as interpreted by the Agroscope Reckenholz Tanikon footprint tool, was 79.09% ± 1.84% in the contribution area. This was slightly more than seen at night, but significantly lower than the average under unstable atmospheric stratification across the three periods of interest (89%). The average distance of the farthest point of the flux footprint under steady state atmospheric conditions was 202.61?±?69.33 m, markedly greater than that under non-steady state conditions (68.55?±?10.34 m). This also indicates that the CO2 flux observed using EC was affected primarily by hydrochemical erosion reactions in the glacier area, (4) a good negative correlation was found between net glacier exchange (NGE) of CO2 and air temperature on precipitation-free days. Strong ice and snow ablation could promote hydrochemical reactions of soluble substances in the debris area and accelerated sinking of atmospheric CO2. Precipitation events might reduce snow and ice melting, driven by reduced regional temperatures. However, a connection between NGE and precipitation, when less than 8.8 mm per day, was not obvious. When precipitation was greater than 8.8 mm per day, NGE decreased with increasing precipitation, (5) graphically, the slope of NGE, related to daily runoff, followed a trend: snow melting period?>?snow accumulation period?>?early glacial ablation period?>?late glacier ablation period?>?dramatic glacier ablation period. The slope was relatively large during snow melting, likely because of CO2 sinking caused by water–rock interactions. The chemical reaction during elution in the snow layer might also promote atmospheric CO2 drawdown. At the same time, the damping effect of snow cover and the almost-closed glacier hydrographic channel inhibited the formation of regional runoff, possibly providing sufficient time for the chemical reaction, thus promoting further CO2 drawdown.  相似文献   

15.
Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC?+?TOC) to the ocean during outgoing tides ranged from ??1.8±0.5?×?103 to 9.5±0.7?×?103?mol C h?1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4?×?106?mol C year?1. Following a major rain event (36 mm rain in 3 days), FDIC?+?TOC increased and reached values as high as 29.0 ±?0.7?×?103?mol C h?1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ±?4?×?106?mol C year?1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.  相似文献   

16.
The CO2 concentration of the air in Postojna Cave (400–7900 ppm) is found to be induced by CO2 sources (human respiration contributing?~?20,000–58,000 ppm per breath, outgassing of dripwater and water seeping from the vadose zone/epikarst with a pCO2 values of 5000–29,000 ppm, and underground Pivka River having pCO2 at 2344–4266 ppm) and CO2 dilution (inflow of outside air with a CO2 concentration of?~?400 ppm). Measurements show that sinking Pivka River has the lowest CO2 concentration among plausible CO2 sources but still continuously exceeds the surrounding cave air CO2 concentration. During the winter months, intensive ventilation reduces the cave air CO2 concentration to outside levels (~?400 ppm), even in the centre of the cave system. CO2 dilution is less pronounced in summer (CO2(min)?≈?800 ppm), since the ventilation rate is not as strong as in winter and the outside air that enters the cave through breathing holes and fractures is enriched with soil CO2. During spring and autumn, the daily alternation of the ventilation regime with a smaller rate of air exchange results in yearly cave air CO2 peaks of up to?~?2400 ppm. Some dead-end passages can be much less affected by ventilation, resulting in a cave air CO2 concentration of up to 7900 ppm. The strongest diurnal CO2 peaks due to human respiration were recorded during the spring holidays (increase of up to 1300 ppm day?1), compared to considerably smaller summer peaks despite peak visits (increase of?~?600 ppm day?1).  相似文献   

17.
Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed processes, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosystems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance between the invasion of coastal waters by anthropogenic CO2, watershed export of alkalinity, organic matter and CO2, and changes in the balance between primary production, respiration and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthropogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is necessary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajectories locally to conserve coastal organisms vulnerable to ocean acidification.  相似文献   

18.
In this paper, we demonstrated a new approach to CO2 mineral sequestration using wollastonite carbonation assisted by sulfuric acid and ammonia. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and 29Si nuclear magnetic resonance. The change in Gibbs free energy from ?223 kJ/mol for the leaching reaction of wollastonite to ?101 kJ/mol for the carbonation reaction indicated that these two reactions can proceed spontaneously. The leached and carbonated wollastonite showed fibrous bassanite and granular calcium carbonate, respectively, while the crystal structure of pristine wollastonite was destroyed and the majority of the Ca2+ in pristine wollastonite leached. The chemical changes in the phases were monitored during the whole process. A high carbonation rate of 91.1 % could be obtained under the action of sulfuric acid and ammonia at 30 °C at normal atmospheric pressure, indicating its potential use for CO2 sequestration.  相似文献   

19.
The present study examines the temporal variability of air–water CO2 fluxes (FCO2) and seawater carbonate chemistry in a Baja California coastal lagoon during an exceptionally warm anomaly that was developed in Northeast Pacific coasts during 2014. This oceanographic condition led to a summer-like season (weak upwelling condition) during the study period, which reached a maximum surface temperature anomaly of 2 °C in September 2014. San Quintín Bay acts as a source of CO2 to the atmosphere in 2014 (3.3 ± 4.8 mmol C m?2 day?1) with the higher positive fluxes mainly observed in summer months (9.0 ± 5.3 mmol C m?2 day?1). Net ecosystem production (NEP) switched seasonally between net heterotrophy and net autotrophy during the study period, with an annual average of 2.2 ± 7.1 mmol C m?2 day?1, which indicates that San Quintín Bay was a net autotrophic system during the atypical warm oceanographic condition in 2014. This pattern of seasonal variations in the carbon balance at San Quintín Bay appears to be linked to the life cycle of benthic communities, which play an important role in the whole-ecosystem metabolism. Under the limited input from external sources coupled with an increase in seawater temperatures, the recycled benthic carbon and nutrient fluxes play a major role to sustain water-column processes within the bay. Since the upwelling condition may influence the magnitude of the air–water CO2 fluxes, our results clearly indicated that San Quintín Bay is a net source of carbon to the atmosphere regardless of the adjacent oceanic conditions. Our study sheds light on the carbon dynamics and its metabolic implications in a shallow coastal ecosystem under a regional warm anomaly and contributes potentially relevant information in view of the likely future scenario of global climate change.  相似文献   

20.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号