首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an assessment of the potential impacts of climate change on hydropower production within a paradigmatic, very highly exploited cryospheric area of upper Valtellina valley in the Italian Alps. Based on dependable and unique hydrological measures from our high‐altitude hydrometric network Idrostelvio during 2006–2015, we set up the Poly‐Hydro model to mimic the cryospheric processes driving hydrological flow formation in this high‐altitude area. We then set up an optimization tool, which we call Poly‐Power, to maximize the revenue of the plant manager under given hydrological regimes, namely, by proper operation of the hydroelectric production scheme (reservoirs, pipelines, and power plants) of the area. We then pursue hydrological projections until 2100, feeding Poly‐Hydro with the downscaled outputs of three general circulation models from the Intergovernmental Panel on Climate Change Fifth Assessment Report, under the scenarios Representative Concentration Pathway (RCP) 2.6, RCP 4.5, and RCP 8.5. We assess hydrological flows in two reference decades, that is, at half century (2040–2049), and end of century (2090–2099). We then feed the so obtained hydrological scenarios as inputs to Poly‐Power, and we project future production of hydroelectric power, with and without reoperation of the system. The average annual stream flows for hydropower production decreases along the century under our scenarios (?21 to +7%, on average ? 5% at half century; ?17 to ?2%, average ? 8%, end of century), with ice cover melting unable to offset such decrease. Reduction in snowfall and increase in liquid rainfall are the main factors affecting the modified hydrological regime. Energy production (and revenues) at half century may increase under our scenarios (?9 to +15%, +3% on average). At the end of century in spite of a projected increase on average (?7 to +6%, +1% on average), under the warmest scenario RCP 8.5 decrease of energy production is consistently projected (?4% on average). Our results provide an array of potential scenarios of modified hydropower production under future climate change and may be used for brain storming of adaptation strategies.  相似文献   

2.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   

3.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

4.
T. Estrela 《水文科学杂志》2013,58(6):1154-1167
Abstract

Impacts on water resources produced by climate change can be exacerbated when occurring in regions already presenting low water resources levels and frequent droughts, and subject to imbalances between water demands and available resources. Within Europe, according to existing climate change scenarios, water resources will be severely affected in Spain. However, the detection of those effects is not simple, because the natural variability of the water cycle and the effects of water abstractions on flow discharges complicate the establishment of clear trends. Therefore, there is a need to improve the assessment of climate change impacts by using hydrological simulation models. This paper reviews water resources and their variability in Spain, the recent modelling studies on hydrological effects of climate change, expected impacts on water resources, the implications in river basins and the current policy actions.

Editor Z.W. Kundzewicz

Citation Estrela, T., Pérez-Martin, M.A., and Vargas, E., 2012. Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57 (6), 1154–1167.  相似文献   

5.
In this article, we propose an investigation of the modifications of the hydrological response of two Peruvian Amazonas–Andes basins in relationship with the modifications of the precipitation and evapotranspiration rates inferred by the IPCC. These two basins integrate around 10% of the total area of the Amazonian basin. These estimations are based on the application of two monthly hydrological models, GR2M and MWB3, and the climatic projections come from BCM2, CSMK3 and MIHR models for A1B and B1 emission scenarios (SCE A1B and SCE B1). Projections are approximated by two simple scenarios (anomalies and horizon) and annual rainfall rates, evapotranspiration rates and discharge were estimated for the 2020s (2008–2040), 2050s (2041–2070) and 2080s (2071–2099). Annual discharge shows increasing trend over Requena basin (Ucayali river), Puerto Inca basin (Pachitea river), Tambo basin (Tambo river) and Mejorada basin (Mantaro river) while discharge shows decreasing trend over the Chazuta basin (Huallaga river), the Maldonadillo basin (Urubamba river) and the Pisac basin (Vilcanota river). Monthly discharge at the outlet of Puerto Inca, Tambo and Mejorada basins shows increasing trends for all seasons. Trends to decrease are estimated in autumn discharge over the Requena basin and spring discharge over Pisac basin as well as summer and autumn discharges over both the Chazuta and the Maldonadillo basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Climate-driven alterations of hydro-meteorological conditions can change river flow regimes and potentially affect the migration behaviour of fishes and the productivity of important fisheries in the Amazon basin, such as those for the continental-scale migratory goliath catfishes (Brachyplatystoma, Pimelodidae). In this study, we investigated hydrologic responses to climate change using a hydrologic model forced with climate inputs, which integrate historical (2001–2010) observations and general circulation model (GCM) projections under the emission scenario Representative Concentration Pathway 8.5. We developed an empirical model to characterize future (2090–2099) climate-change impacts on goliath catfish spawning migrations as a function of river flow depth dynamics at the upstream elevational limit of spawning (250 m) in headwater basins of the Amazon. The model results revealed spatially variable impacts of climate change on the catfish spawning migrations. The Marañón, Ucayali, Juruá, Purus, and Madeira basins had a predicted increase in the annual mean (3–8%) and maximum (1.1–4.9%) spawning migration rate (i.e., the fraction of fish that migrate to the spawning grounds in a day), mainly due to the lengthened rising phase of flow-driven migratory events during wet seasons. The Caquetá-Japurá, Putumayo-Içá, Napo, and Blanco rivers had predicted decreases (3–7%) in the mean migration rate because of decreases in the length of the rising season of flow depth and the frequency of migratory events. The predicted timing of fish spawning migrations (quantified by the temporal centroid of migration rates) was delayed by 7–10 days in the west-central and southwest regions and was 8 days earlier in the northwest and northcentral areas, due to changes in the onset of the rising season. We established a river depth baseline that controls the onset of goliath catfish spawning migration. This depth varies between 0.9–5.6 m across study sites. We found that the estimated depth baseline was most sensitive to uncertainties in river width and cross-sectional channel shape. These results may help inform sustainable adaptation strategies for ecosystem conservation and local fisheries management in the Amazon basin.  相似文献   

7.
ABSTRACT

Climate change alters hydrological processes and results in more extreme hydrological events, e.g. flooding and drought, which threaten human livelihoods. In this study, the large-scale distributed variable infiltration capacity (VIC) model was used to simulate future hydrological processes in the Yarlung Zangbo River basin (YZRB), China, with a combination of the CMIP5 (Coupled Model Intercomparison Project, fifth phase) and MIROC5 (Model for Interdisciplinary Research on Climate, fifth version) datasets. The results indicate that the performance of the VIC model is suitable for the case study, and the variation in runoff is remarkably consistent with that of precipitation, which exhibits a decreasing trend for the period 2046–2060 and an increasing trend for 2086–2100. The seasonality of runoff is evident, and substantial increases are projected for spring runoff, which might result from the increase in precipitation as well as the increase in the warming-induced melting of snow, glaciers and frozen soil. Moreover, evapotranspiration exhibits an increase between 2006–2020 and 2046–2060 over the entire basin, and soil moisture decreases in upstream areas and increases in midstream and downstream areas. For 2086–2100, both evapotranspiration and soil moisture increase slightly in the upstream and midstream areas and decrease slightly in the downstream area. The findings of this study could provide references for runoff forecasting and ecological protection for similar studies in the future.  相似文献   

8.
The impact and uncertainty of climate change on the hydrology of the Mara River basin (MRB) was assessed. Sixteen global circulation models (GCMs) were evaluated, and five were selected for the assessment of future climate scenarios in the basin. Observed rainfall and temperature data for the control period (1961–1990) were combined with expected GCMs output using the delta and direct statistical downscaling methods and three greenhouse gas emission scenarios (A1B, A2 and B1). Uncertainties of climate change were addressed through compare and contrast of results across diverse GCMs, future climate scenarios and the two downscaling methods. Both methods produced a relatively similar annual rainfall amount, but their monthly and daily pattern showed considerable differences. The relative advantages and disadvantages of implementing one method over the other were also explored. The hydrologic impact of climate change in the basin was assessed using Soil and Water Assessment Tool. The model was calibrated and validated with observed data in the control period with (Nash–Sutcliff efficiency, coefficient of determination) results of (calibration: 0.68, 0.69) and (validation: 0.43, 0.44) at Mara Mines. Results have shown a statistically significant increase in flow volume of the Mara River flow at Mara Mines for the year 2046–2065 and 2081–2100. With due attention to the limitations, findings of this study have a wider application for water resources sustainability analysis in the MRB in the face of uncertainties due to climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Anthropogenic and climatic-induced changes to flow regimes pose significant risks to river systems. Northern rivers and their deltas are particularly vulnerable due to the disproportionate warming of the Northern Hemisphere compared with the Southern Hemisphere. Of special interest is the Peace–Athabasca Delta (PAD) in western Canada, a productive deltaic lake and wetland ecosystem, which has been recognized as a Ramsar site. Both climate- and regulation-induced changes to the hydrological regime of the Peace River have raised concerns over the delta's ecological health. With the damming of the headwaters, the role of downstream unregulated tributaries has become more important in maintaining, to a certain degree, a natural flow regime, particularly during open-water conditions. However, their flow contributions to the mainstem river under future climatic conditions remain largely uncertain. In this study, we first evaluated the ability of a land-surface hydrological model to simulate hydro-ecological relevant indicators, highlighting the model's strengths and weaknesses. Then, we investigated the streamflow conditions in the Smoky River, the largest unregulated tributary of the Peace River, in the 2071–2100 versus the 1981–2010 periods. Our modelling results revealed significant changes in the hydrological regime of the Smoky River, such as increased discharge in winter (+190%) and spring (+130%) but reduced summer flows (−33%) in the 2071–2100 period compared with the baseline period, which will have implications for the sustainability of the downstream PAD. In particular, the projected reductions in 30-day and 90-day maximum flows in the Smoky River will affect open-water flooding, which is important in maintaining lake levels and connectivity to perimeter delta wetlands in the Peace sector of the PAD. The evaluation of breakup and freeze-up flows for the 2071–2100 period showed mixed implications for the ice-jam flooding, which is essential for recharging high-elevation deltaic basins. Thus, despite projected increase in annual and spring runoff in the 2071–2100 period from the Smoky sub-basin, the sustainability of the PAD still remains uncertain.  相似文献   

10.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   

11.
Located in the northeast of the Tibetan Plateau, the headwaters of the Yellow River basin (HYRB) are very vulnerable to climate change. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the impact of future climate change on this region's hydrological components for the near future period of 2013–2042 under three emission scenarios A1B, A2 and B1. The uncertainty in this evaluation was considered by employing Bayesian model averaging approach on global climate model (GCM) multimodel ensemble projections. First, we evaluated the capability of the SWAT model for streamflow simulation in this basin. Second, the GCMs' monthly ensemble projections were downscaled to daily climate data using the bias‐correction and spatial‐disaggregation method and then were utilized as input into the SWAT model. The results indicate the following: (1) The SWAT model exhibits a good performance for both calibration and validation periods after adjusting parameters in snowmelt module and establishing elevation bands in sub‐basins. (2) The projected precipitation suggests a general increase under all three scenarios, with a larger extent in both A1B and B1 and a slight variation for A2. With regard to temperature, all scenarios show pronounced warming trends, of which A2 displays the largest amplitude. (3) In the terms of total runoff from the whole basin, there is an increasing trend in the future streamflow at Tangnaihai gauge under A1B and B1, while the A2 scenario is characterized by a declining trend. Spatially, A1B and B1 scenarios demonstrate increasing trends across most of the region. Groundwater and surface runoffs indicate similar trends with total runoff, whereas all three scenarios exhibit an increase in actual evapotranspiration. Generally, both A1B and B1 scenarios suggest a warmer and wetter tendency over the HYRB in the forthcoming decades, while the case for A2 indicates a warmer and drier trend. Findings from this study can provide beneficial reference to water resource and eco‐environment management strategies for governmental policymakers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Changes in precipitation and temperature have direct effects on crop water use, water stress, crop yield, evapotranspiration, water nutrient dynamics and other indicators. This study, built on a modelling framework with the Soil and Watershed Assessment Tool (SWAT) model for the Raccoon River Watershed in central Iowa, a typical US Midwestern agricultural watershed, examines the watershed response to changes in meteorological inputs from an ensemble of ten global climate models under the A1B scenario. Changes in climate were directly applied to observations (the delta change method) assuming that the estimates of climate change are reliable even if the simulated current climate may be biased. The ensemble average for the mid‐century (1946–1965) predicted 0.7% increase in daily precipitation (monthly variation from ?11.3% to +19.5%) and 2.78 °C increase in average temperature over the entire watershed. These predictions were translated through a well‐calibrated SWAT modelling setup into 22% decrease in snowfall, 16% decrease in surface runoff, 18% decrease in baseflow, 8% increase in evapotranspiration and 17% decrease in total water yield. The spatial impact at the subwatershed level revealed a wide variation (but no defined trend) with decrease in water yield that ranged from 10% to 23%. Flow near the watershed outlet (Van Meter, Iowa) is expected to decline by 17% on an average annual basis with the highest impact occurring during summer months with a maximum 39% reduction in August. Changes in climate were found to have a clear and significant impact signal of decreasing streamflow at the watershed outlet with far‐reaching implication for drinking water supplies for the central Iowa communities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Variations in streamflows of five tributaries of the Poyang Lake basin, China, because of the influence of human activities and climate change were evaluated using the Australia Water Balance Model and multivariate regression. Results indicated that multiple regression models were appropriate with precipitation, potential evapotranspiration of the current month, and precipitation of the last month as explanatory variables. The NASH coefficient for the Australia Water Balance Model was larger than 0.842, indicating satisfactory simulation of streamflow of the Poyang Lake basin. Comparison indicated that the sensitivity method could not exclude the benchmark‐period human influence, and the human influence on streamflow changes was overestimated. Generally, contributions of human activities and climate change to streamflow changes were 73.2% and 26.8% respectively. However, human‐induced and climate‐induced influences on streamflow were different in different river basins. Specifically, climate change was found to be the major driving factor for the increase of streamflow within the Rao, Xin, and Gan River basins; however, human activity was the principal driving factor for the increase of streamflow of the Xiu River basin and also for the decrease of streamflow of the Fu River basin. Meanwhile, impacts of human activities and climate change on streamflow variations were distinctly different at different temporal scales. At the annual time scale, the increase of streamflow was largely because of climate change and human activities during the 1970s–1990s and the decrease of streamflow during the 2000s. At the seasonal scale, climate change was the main factor behind the increase of streamflow in the spring and summer season. Human activities increase the streamflow in autumn and winter, but decrease the streamflow in spring. At the monthly scale, different influences of climate change and human activities were detected. Climate change was the main factor behind the decrease of streamflow during May to June and human activities behind the decrease of streamflow during February to May. Results of this study can provide a theoretical basis for basin‐scale water resources management under the influence of climate change and human activities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

A river flow regime describes an average seasonal behaviour of flow and reflects the climatic and physiographic conditions in a basin. Differences in the regularity (stability) of the seasonal patterns reflect different dimensionality of the flow regimes, which can change subject to changes in climate conditions. The empirical orthogonal functions (EOF) approach can be used to describe the intrinsic dimension of river flow regimes and is also an adopted method for reducing the phase space in connection to climate change studies, especially in studies of nonlinear dynamic systems with preferred states. A large data set of monthly river flow for the Nordic countries has been investigated in the phase space reduced to the first few amplitude functions to trace a possible signature of climate change on the seasonal flow patterns. The probability density functions (PDF) of the weight coefficients and their possible change over time were used as an indicator of climate change. Two preferred states were identified connected to stable snowmelt-fed and rainfed flow regimes. The results indicate changes in the PDF patterns with time towards higher frequencies of rainfed regime types. The dynamics of seasonal patterns studied in terms of PDF renders it an adequate and convenient characterization, helping to avoid bias connected to flow regime classifications as well as uncertainties inferred by a modelling approach.  相似文献   

15.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

A semi-distributed hydrological model is developed, calibrated and validated against unregulated river discharge from the Tocantins-Araguaia River Basin, northern Brazil. Climate change impacts are simulated using projections from the 41 Coupled Model Intercomparison Project Phase 5 climate models for the period 2071–2100 under the RCP4.5 scenario. Scenario results are compared to a 1971–2000 base line. Most climate models suggest declines in mean annual discharge although some predict increases. A large proportion suggest that the dry season experiences large declines in discharge, especially during the transition to the rising water period. Most models (>75%) suggest declines in annual minimum flows. This may have major implications for both current and planned hydropower schemes. There is greater uncertainty in projected changes in wet season and annual maximum discharges. Two techniques are investigated to reduce uncertainty in projections, but neither is able to provide more confidence in the simulated changes in discharge.
Editor D. Koutsoyiannis Associate editor F. Hattermann  相似文献   

17.
The present study sets out to investigate the sensitivity of water availability to climate change for a large western Himalayan river (the Satluj River basin with an area of 22 275 km2 and elevation range of 500 to 7000 m), which receives contributions from rain, snow and glacier melt runoff. About 65% of the basin area is covered with snow during winter, which reduces to about 11% after the ablation period. After having calibrated a conceptual hydrological model to provide accurate simulations of observed stream flow, the hydrological response of the basin was simulated using different climatic scenarios over a period of 9 years. Adopted plausible climate scenarios included three temperature scenarios (T + 1, T + 2, T + 3 °C) and four rainfall scenarios (P ? 10, P ? 5, P + 5 and P + 10%). The effect of climate change was studied on snowmelt and rainfall contribution runoff, and total stream flow. Under warmer climate, a typical feature of the study basin was found to be reduction in melt from the lower part of the basin owing to a reduction in snow covered area and shortening of the summer melting season, and, in contrast, an increase in the melt from the glacierized part owing to larger melt and an extended ablation period. Thus, on the basin scale, reduction in melt from the lower part was counteracted by the increase from melt from upper part of the basin, resulting in a decrease in the magnitude of change in annual melt runoff. The impact of climate change was found to be more prominent on seasonal rather than annual water availability. Reduction of water availability during the summer period, which contributes about 60% to the annual flow, may have severe implications on the water resources of the region, because demand of water for irrigation, hydropower and other usage is at its peak at this time. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Predicting long‐term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented a hierarchical Bayesian (HB) analysis to coherently admit multiple data sources and uncertainties including data inputs, parameters, and model structures to identify the potential consequences of climate change on soil moisture and streamflow at the head watersheds ranging from low to high elevations in the southern Appalachian region of the United States. We have considered climate change scenarios based on three greenhouse gas emission scenarios of the Interovernmental Panel on Climate Change: A2, A1B, and B1 emission scenarios. Full predictive distributions based on HB models are capable of providing rich information and facilitating the summarization of prediction uncertainties. With predictive uncertainties taken into account, the most pronounced change in soil moisture and streamflow would occur under the A2 scenario at both low and high elevations, followed by the A1B scenario and then by the B1 scenario. Uncertainty in the change of soil moisture is less than that of streamflow for each season, especially at high elevations. A reduction of soil moisture in summer and fall, a reduction or slight increase of streamflow in summer, and an increase of streamflow in winter are predicted for all three scenarios at both low and high elevations. The hydrological predictions with quantified uncertainties from a HB model could aid more‐informed water resource management in developing mitigation plans and dealing with water security under climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

A semi-distributed hydrological model of the Niger River above and including the Inner Delta is developed. GCM-related uncertainty in climate change impacts are investigated using seven GCMs for a 2°C increase in global mean temperature, the hypothesised threshold of “dangerous” climate change. Declines in precipitation predominate, although some GCMs project increases for some sub-catchments, whilst PET increases for all scenarios. Inter-GCM uncertainty in projected precipitation is three to five times that of PET. With the exception of one GCM (HadGEM1), which projects a very small increase (3.9%), river inflows to the Delta decline. There is considerable uncertainty in the magnitude of these reductions, ranging from 0.8% (HadCM3) to 52.7% (IPSL). Whilst flood extent for HadGEM1 increases (mean annual peak +1405 km2/+10.2%), for other GCMs it declines. These declines range from almost negligible changes to a 7903 km2 (57.3%) reduction in the mean annual peak.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   

20.
The Puget Sound basin in northwestern Washington, USA has experienced substantial land cover and climate change over the last century. Using a spatially distributed hydrology model (the Distributed Hydrology‐Soil‐Vegetation Model, DHSVM) the concurrent effects of changing climate (primarily temperature) and land cover in the basin are deconvolved, based on land cover maps for 1883 and 2002, and gridded climate data for 1915–2006. It is found that land cover and temperature change effects on streamflow have occurred differently at high and low elevations. In the lowlands, land cover has occurred primarily as conversion of forest to urban or partially urban land use, and here the land cover signal dominates temperature change. In the uplands, both land cover and temperature change have played important roles. Temperature change is especially important at intermediate elevations (so‐called transient snow zone), where the winter snow line is most sensitive to temperature change—notwithstanding the effects of forest harvest over the same part of the basin. Model simulations show that current land cover results in higher fall, winter and early spring streamflow but lower summer flow; higher annual maximum flow and higher annual mean streamflow compared with pre‐development conditions, which is largely consistent with a trend analysis of model residuals. Land cover change effects in urban and partially urban basins have resulted in changes in annual flow, annual maximum flows, fall and summer flows. For the upland portion of the basin, shifts in the seasonal distribution of streamflows (higher spring flow and lower summer flow) are clearly related to rising temperatures, but annual streamflow has not changed much. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号