首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《国际泥沙研究》2022,37(6):715-728
Rainfall-induced floods may trigger intense sediment transport on erodible catchments, especially on the Loess Plateau in China, which in turn modifies the floods. However, the role of sediment transport in modifying floods has to date remained poorly understood. Concurrently, traditional hydrodynamic models for rainfall-induced floods typically ignore sediment transport, which may lead to inaccurate results for highly erodible catchments. Here, a two-dimensional (2D) coupled shallow water hydro-sediment-morphodynamic (SHSM) model, based on the Finite Volume Method on unstructured meshes and parallel computing, is proposed and applied to simulate rainfall-induced floods in the Zhidan catchment on the Loess Plateau, Shaanxi Province, China. For six historical floods of return periods up to 2 years, the numerical results compare well with observations of discharge hydrographs at the catchment outlet. The computed runoff-sediment yield relation is quantitatively reasonable as compared with other catchments under similar geographical conditions. It is revealed that neglecting sediment transport leads to underestimation of peak discharge of the flood by 14%–45%, whilst its effect on the timing of the peak discharge varies for different flood events. For 18 design floods with return periods of 10–500 years, sediment transport may lead to higher peak discharge by around 9%–15%. The temporal pattern of concentrated rainfall in a short period may lead to a larger exponent value of the power function for the runoff-sediment yield relation. The current finding leads us to propose that incorporating sediment transport in rainfall-induced flood modeling is warranted. The SHSM model is applicable to flood and sediment modeling at the catchment scale in support of risk management and water and soil management.  相似文献   

2.
Reservoirs are the most important constructions for water resources management and flood control. Great concern has been paid to the effects of reservoir on downstream area and the differences between inflows and dam site floods due to the changes of upstream flow generation and concentration conditions after reservoir’s impoundment. These differences result in inconsistency between inflow quantiles and the reservoir design criteria derived by dam site flood series, which can be a potential risk and must be quantificationally evaluated. In this study, flood frequency analysis (FFA) and flood control risk analysis (FCRA) methods are used with the long reservoir inflow series derived from a multiple inputs and single output model and a copula-based inflow estimation model. The results of FFA and FCRA are compared and the influences on reservoir flood management are also discussed. The Three Gorges Reservoir (TGR) in China is selected as a case study. Results show that the differences between the TGR inflow and dam site floods are significant which result in changes on its flood control risk rates. The mean values of TGR’s annual maximum inflow peak discharge and 3 days flood volume have increased 5.58 and 3.85% than the dam site ones, while declined by 1.82 and 1.72% for the annual maximum 7 and 15 days flood volumes. The flood control risk rates of middle and small flood events are increased while extreme flood events are declined. It is shown that the TGR can satisfy the flood control task under current hydrologic regime and the results can offer references for better management of the TGR.  相似文献   

3.
The traditional and still prevailing approach to characterization of flood hazards to dams is the inflow design flood (IDF). The IDF, defined either deterministically or probabilistically, is necessary for sizing a dam, its discharge facilities and reservoir storage. However, within the dam safety risk informed decision framework, the IDF does not carry much relevance, no matter how accurately it is characterized. In many cases, the probability of the reservoir inflow tells us little about the probability of dam overtopping. Typically, the reservoir inflow and its associated probability of occurrence is modified by the interplay of a number of factors (reservoir storage, reservoir operating rules and various operational faults and natural disturbances) on its way to becoming the reservoir outflow and corresponding peak level—the two parameters that represent hydrologic hazard acting upon the dam. To properly manage flood risk, it is essential to change approach to flood hazard analysis for dam safety from the currently prevailing focus on reservoir inflows and instead focus on reservoir outflows and corresponding reservoir levels. To demonstrate these points, this paper presents stochastic simulation of floods on a cascade system of three dams and shows progression from exceedance probabilities of reservoir inflow to exceedance probabilities of peak reservoir level depending on initial reservoir level, storage availability, reservoir operating rules and availability of discharge facilities on demand. The results show that the dam overtopping is more likely to be caused by a combination of a smaller flood and a system component failure than by an extreme flood on its own.  相似文献   

4.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

A model based on analytical development and numerical solution is presented for estimating the cumulative distribution function (cdf) of the runoff volume and peak discharge rate of urban floods using the joint probability density function (pdf) of rainfall volume and duration together with information about the catchment's physical characteristics. The joint pdf of rainfall event volume and duration is derived using the theory of copulas. Four families of Archimedean copulas are tested in order to select the most appropriate to reproduce the dependence structure of those variables. Frequency distributions of runoff event volume and peak discharge rate are obtained following the derived probability distribution theory, using the functional relationship given by the rainfall–runoff process. The model is tested in two urban catchments located in the cities of Chillán and Santiago, Chile. The results are compared with the outcomes of continuous simulation in the Storm Water Management Model (SWMM) and with those from another analytical model that assumes storm event duration and volume to be statistically independent exponentially distributed variables.

Citation Zegpi, M. & Fernández, B. (2010) Hydrological model for urban catchments – analytical development using copulas and numerical solution. Hydrol. Sci. J. 55(7), 1123–1136.  相似文献   

6.
Our proposed three-dimensional dam breach model is tested using one field test from the European Community funded IMPACT project. Results show that this three-dimensional model accurately predicts the peak breach discharge and final breach width for this case. It is shown that the three-dimensional model is capable of simulating the breaches that develop in different locations along a hypothetical long non-cohesive dam while accounting for variations in the natural valley topography, including symmetrical and asymmetrical settings. Our results show that both the breach location and reservoir shape have a significant effect on the peak breach discharge and the outflow hydrograph shape. Different inflow hydrographs were found not to significantly change the peak breach discharge rate for the hypothetical reservoir and spillway. Comparisons with laboratory and field dam breach tests and one historically breached dam show that the real shape of the breach channel during the breach process is successfully modeled.  相似文献   

7.
To design and review the operation of spillways, it is necessary to estimate design hydrographs, considering their peak flow, shape and volume. A hybrid method is proposed that combines the shape of the design hydrograph obtained with the UNAM Institute of Engineering Method (UNAMIIM) with the peak flow and volume calculated from a bivariate method. This hybrid method is applied to historical data of the Huites Dam, Sinaloa, Mexico. The goal is to estimate return periods for the maximum discharge flows (that account for the damage caused downstream) and the maximum levels reached in the dam (measure of the hydrological dam safety) corresponding to a given spillway and its management policy. Therefore, to validate the method, the results obtained by the flood routing of the 50-year hydrograph are compared with those obtained by the flood routing of the three largest historical floods. Both maximum flow and elevation were in the range of values observed within 37.5–75 years corresponding to the length of the historical record.  相似文献   

8.
The cascading failure of multiple landslide dams can trigger a larger peak flood discharge than that caused by a single dam failure.Therefore,for an accurate numerical simulation,it is essential to elucidate the primary factors affecting the peak discharge of the flood caused by a cascading failure,which is the purpose of the current study.First,flume experiments were done on the cascading failure of two landslide dams under different upstream dam heights,downstream dam heights,and initial downstream reservoir water volumes.Then,the experimental results were reproduced using a numerical simulation model representing landslide dam erosion resulting from overtopping flow.Finally,the factors influencing the peak flood discharge caused by the cascading failure were analyzed using the numerical simulation model.Experimental results indicated that the inflow discharge into the downstream dam at the time when the downstream dam height began to rapidly erode was the main factor responsible for a cascading failure generating a larger peak flood discharge than that generated by a single dam failure.Furthermore,the results of a sensitivity analysis suggested that the upstream and downstream dam heights,initial water volume in the reservoir of the downstream dam,upstream and downstream dam crest lengths,and distance between two dams were among the most important factors in predicting the flood discharge caused by the cascading failure of multiple landslide dams.  相似文献   

9.
The peak of river floods usually decreases in the downstream direction unless it is compensated by freshwater inflow from tributaries. In the Yellow River (China) the opposite is regularly observed, where the peak discharge of river floods increases in the downstream direction (at a rate far exceeding the contribution from tributaries). This flood peak discharge increase is probably related to rapid morphological changes, to a modified bed friction, or to a combination of both. Yet the relative role of these processes is still poorly understood. This paper aims to analyze the relative contribution of bed erosion and friction change to the peak discharge increase, based on available data and a recently developed numerical model. Using this high-resolution, fully coupled morphodynamic model of non-capacity sediment transport, two hyperconcentrated floods characterized by downstream peak discharge increase are numerically reproduced and analyzed in detail. The results reveal that although erosion effects may contribute to the downstream discharge increase (especially in case of extreme erosion), for most cases the increase must be mainly due to a reduction in bed friction during peak discharge conditions. Additionally, based on the concept of channel storage reduction, the effects of decreasing bed friction and (very strong) bed erosion can be integrated in explaining the peak discharge increase.  相似文献   

10.
孙延伟  许有鹏  高斌  王强  李升峰 《湖泊科学》2021,33(5):1574-1583
长江下游秦淮河流域近年来由于城市化崛起导致不透水面迅速扩张,改变了流域水文过程,导致暴雨洪水灾害风险增大.本文以南京秦淮河流域为例,基于1988—2015年间下垫面和水文气象资料建立了流域水文模型,通过不透水面扩张情景分析,探讨了 1988—2015年间不透水面空间扩张及对流域洪水过程的影响.研究结果表明:(1)秦淮河全流域1988—2015年不透水率从3.92%增长到19.11%,且不同区域扩张速度有所差异;(2)2006—2015年不透水面情景下的洪峰流量平均涨幅大于城市化初期;受流域上下游位置和下垫面地形条件的影响,流域溧水河和句容河两河源处的不透水面变化对洪峰的影响较流域下游出口处更显著;(3)秦淮河流域及不同位置的不透水面扩张情景下,小洪水的洪峰响应均大于大洪水,且不透水面扩张发生在下游主干河流域时的大、小洪水洪峰涨幅差距略大于河源流域.  相似文献   

11.
Abstract

The estimation and review of discharge flow rates in hydraulic works is a fundamental problem in water management. In the case of dams with large regulating capacity, in order to estimate return periods of discharge flow rates from the spillways, it becomes necessary to consider both peak flow and volume of the incoming floods. In this paper, the results of the validation for several methods of assessing design floods for spillways of dams with a large flood control capacity are presented; the validation is performed by comparing the maximum outflows (or the maximum levels reached in the reservoir) obtained from the routing of the design floods with those obtained from the routing of the historical annual maximum floods. The basin of Malpaso Dam, Mexico, is used as the case study.

Editor D. Koutsoyiannis

Citation Domínguez, M.R. and Arganis, J.M.L., 2012. Validation of methods to estimate design discharge flow rates for dam spillways with large regulating capacity. Hydrological Sciences Journal, 57 (3), 460–478.  相似文献   

12.
The formation of landslide dams is often induced by earthquakes in mountainous areas.The failure of a landslide dam typically results in catastrophic flash floods or debris flows downstream.Significant attention has been given to the processes and mechanisms involved in the failure of individual landslide dams.However,the processes leading to domino failures of multiple landslide dams remain unclear.In this study,experimental tests were carried out to investigate the domino failure of landslide dams and the consequent enlargement of downstream debris flows.Different blockage conditions were considered,including complete blockage,partial blockage and erodible bed(no blockage).The mean velocity of the flow front was estimated by videos.Total stress transducers(TSTs)and Laser range finders(LRFs) were employed to measure the total stress and the depth of the flow front,respectively.Under a complete blockage pattern,a portion of the debris flow was trapped in front of each retained landslide dam before the latter collapsed completely.This was accompanied by a dramatic decrease in the mean velocity of the flow front.Conversely,under both partial blockage and erodible bed conditions,the mean velocity of the flow front increased gradually downward along the sloping channel.Domino failures of the landslide dams were triggered when a series of dams(complete blockage and partial blockage) were distributed along the flume.However,not all of these domino failures led to enlarged debris flows.The modes of dam failures have significant impacts on the enlargement of debris flows.Therefore,further research is necessary to understand the mechanisms of domino failures of landslide dams and their effects on the enlargement of debris flows.  相似文献   

13.
The projected impacts of climate change and variability on floods in the southern Africa has not been well studied despite the threat they pose to human life and property. In this study, the potential impacts of climate change on floods in the upper Kafue River basin, a major tributary of the Zambezi River in southern Africa, were investigated. Catchment hydrography was delineated using the Hydro1k at a spatial resolution of 1 km. The daily global hydrological model WASMOD-D model was calibrated and validated during 1971–1986 and 1987–2001 with the simple-split sample test and during 1971–1980 and 1981–1990 with the differential split sample test, against observed discharge at Machiya gauging station. Predicted discharge for 2021–2050 and 2071–2100 were obtained by forcing the calibrated WASMOD-D with outputs from three GCMs (ECHAM, CMCC3 and IPSL) under the IPCC’s SRES A2 and B1 scenarios. The three GCMs derived daily discharges were combined by assigning a weight to each of them according to their skills to reproduce the daily discharge. The two calibration and validation tests suggested that model performance based on evaluation criteria including the Nash–Sutcliffe coefficient, Pearson’s correlation coefficient (r), Percent Bias and R 2 was satisfactory. Flood frequency analysis for the reference period (1960–1990) and two future time slices and climate change scenarios was performed using the peak over threshold analysis. The magnitude of flood peaks was shown to follow generalised Pareto distribution. The simulated floods in the scenario periods showed considerable departures from the reference period. In general, flood events increased during both scenario periods with 2021–2050 showing larger change. The approach in our study has a strong potential for similar assessments in other data scarce regions.  相似文献   

14.
Abstract

The accurate prediction of hourly runoff discharge in a watershed during heavy rainfall events is of critical importance for flood control and management. This study predicts n-h-ahead runoff discharge in the Sandimen basin in southern Taiwan using a novel hybrid approach which combines a physically-based model (HEC-HMS) with an artificial neural network (ANN) model. Hourly runoff discharge data (1200 datasets) from seven heavy rainfall events were collected for the model calibration (training) and validation. Six statistical indicators (i.e. mean absolute error, root mean square error, coefficient of correlation, error of time to peak discharge, error of peak discharge and coefficient of efficiency) were employed to evaluate the performance. In comparison with the HEC-HMS model, the single ANN model, and the time series forecasting (ARMAX) model, the developed hybrid HEC-HMS–ANN model demonstrates improved accuracy in recursive n-h-ahead runoff discharge prediction, especially for peak flow discharge and time.  相似文献   

15.
Hydrologic responses to variations in storm direction provide useful information for the analysis and prediction of floods and the development of watershed management strategies. However, the prediction of hydrologic responses to changes in storm direction is a difficult task that requires meteorological simulations and extensive computation. It is also difficult to identify the center of rotation of a storm affecting a basin of interest. Therefore, we propose a simple approach of rotating the basin position relative to the storm within the rainfall–runoff simulation model instead of changing the pathway of the storm, which we term the basin rotation method (BRM). The proposed BRM was tested on four major typhoon events in South Korea. The results illustrated that the original basin orientation (i.e., before it was rotated) exhibits earlier and higher peak discharge and earlier recession compared to the basin after rotation. We conclude that the proposed method (BRM) is a viable alternative for use in assessing the directional influence of moving storms on floods caused by historical rather than hypothetical storm events.  相似文献   

16.
Flood mitigation should deal with those most sensitive flooding elements to very efficiently release risks and reduce losses. Present the most concerns of flood control are peak level or peak discharge which, however, may not always be the most sensitive flooding element. Actually, along with human activities and climate change, floods bring threats to bear on human beings appear in not only peak level and peak discharge, but also other elements like maximum 24-h volume and maximum 72-h volume. In this paper, by collecting six key flooding intensity indices (elements), a catastrophe progression approach based sensitivity analysis algorithm model is developed to identify the indices that mostly control over the flood intensity. The indices sensitivity is determined through a selected case study in the Wujiang River, South China, based on half a century of flow record. The model results indicate that there is no evident relationship of interplay among the index sensitivities, but the variability of the index sensitivity is closely related to the index variability and the index sensitivity increases with the decrease of index value. It is found that peak discharge is not the most influential flooding factor as is generally thought in this case. The sensitivity value of the maximum 24-h volume is the greatest influential factor among all the other indices, indicating that this index plays a leading role in the flood threat of the Wujiang River, South China. It is inferred that, for the purpose of flood warning and mitigation, the peak flood discharge is not always the most sensitive and dominant index as opposed to the others, depending on the sensitivity.  相似文献   

17.
FluBiDi is a two-dimensional model created to simulate real events that can take days and months, as well as short events (minutes or hours) and inclusive laboratory tests. To verify the robustness of FluBiDi, it was tested using a previous study with both designed and real digital elevation models. The results highlight good agreement between the models (i.e. Mike Flood, SOBEK, ISIS 2D, and others) tested and FluBiDi (around 90% for a specific instant and 95% for the complete time simulation). In the simulated hydrographs, the discharge peak value, time to peak, and water level results were accurate, reproducing them with an error of less than 5%. The velocity differences observed in a couple of tests in FluBiDi were associated with very short periods of time (seconds). However, FluBiDi is highly accurate for simulating floods under real topographical conditions with differences of around 2 cm when water depth is around 150 cm. The average water depth and velocities are precise, and the model describes with high accuracy the pattern and extent of floods. FluBiDi has the capability to be adjusted to different types of events and only requires limited input data.  相似文献   

18.
Analytical model for computing residence times near a pumping well   总被引:4,自引:2,他引:2  
An analytical solution for calculating the residence time of fluid flowing toward a pumping well in an unconfined aquifer has been developed. The analytical solution was derived based on a radial, steady-state, Dupuit-Forchheimer flow model. The resulting integral expression involved computing the imaginary error function, for which a simple series expansion is proposed. The validity of the analytical expression is demonstrated by testing its results against numerical results for an example problem. The analytical solution compared favorably with the numerical approximation.  相似文献   

19.
汶川地震后我国西部山区大量崩滑体堵塞泥石流沟道,形成堰塞坝,暴雨条件下极易溃决形成溃决洪水,剧烈冲刷侵蚀下游松散堆积体,形成或加剧泥石流灾害规模,对下游拦挡工程的破坏性极强。通过室内水槽试验,监测堆积体内和拦挡坝后相关土水、动力参数响应规律,分析松散堆积体冲刷侵蚀启动力学机制及其与拦挡坝相互作用机理,并推导出考虑孔隙水压力的泥石流冲击力计算公式。结果表明:(1)冲刷启动过程中堆积体以溯源侵蚀、侧蚀为主,体积含水率和孔隙水压力先增后减,基质吸力呈波动减小。(2)在泥石流冲击拦挡坝过程中,坝后出现两次冲击峰值,第一次拦挡坝泄水通畅,振动加速度为1.29 m/s2;第二次排水受阻,振动加速度为1.22 m/s2,同时泥位达到峰值95 mm。(3)泥石流对拦挡坝的整体冲击力由动、静两部分组成,静冲击力与坝后孔隙水压力呈正比,而动冲击力与流速的平方呈正比。研究成果可为震后泥石流沟道松散堆积体冲刷启动机理研究与防治工程优化提供理论与技术支持。  相似文献   

20.
Abstract

Considering floods as multivariate events allows a better statistical representation of their complexity. In this work the relevance of multivariate analysis of floods for designing or assessing the safety of hydraulic structures is discussed. A flood event is characterized by its peak flow and volume. The dependence between the variables is modelled with a copula. One thousand random pairs of variables are transformed to hydrographs, applying the Beta distribution function. Synthetic floods are routed through a reservoir to assess the risk of overtopping a dam. The resulting maximum water levels are compared to estimations considering the peak flow and volume separately. The analysis is performed using daily flows observed in the River Agrio in Neuquén Province, Argentina, a catchment area of 7300 km2. The bivariate approach results in higher maximum water level values. Therefore the multivariate approach should be preferred for the estimation of design variables.
Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号