共查询到13条相似文献,搜索用时 0 毫秒
1.
XIA Zhengkai WANG Zanhong & ZHAO Qingchun . College of Environmental Sciences Peking University Beijing China . Archaeology Research Institute Chinese Academy of Social Sciences Beijing China 《中国科学D辑(英文版)》2004,47(7):599-606
The occurrence of prehistoric extreme flood events has been the common interest of geologists, geographers and archaeologists. It is recognized that from 5000 aBP to 3000 aBP was a period of extreme floods frequently occurring around the world. For in-stance, flood events have been found in North Amer-ica, rapid sea level rise has been found in both the Black Sea and the Mediterranean Sea, and flooded ancient cities have been found in a number of coast areas[1—6]. In China, records of pre… 相似文献
2.
The identification of homogeneous precipitation regions is essential in the planning, design and management of water resources systems. Regions are identified using a technique that partitions climate sites into groups based on the similarity of their attributes; the procedure is known as regionalization. In this paper the ability of four attribute sets to form large, coherent precipitation zones is assessed in terms of the regional homogeneity of precipitation statistics and computational efficiency. The outcomes provide guidance for effective attribute selection for future studies in Canada. The attributes under consideration include location parameters (latitude, longitude), distance to major water bodies, site elevation and atmospheric variables modelled at different pressure levels. The analysis is conducted in two diverse climate regions within Canada including the Prairie and the Great Lakes–St Lawrence lowlands regions. The method consists of four main steps: (i) formation of the attribute sets; (ii) determination of the preferred number of regions (selection of the c-value) into which the sites are partitioned; (iii) regionalization of climate sites using the fuzzy c-means clustering algorithm; and (iv) validation of regional homogeneity using L-moment statistics. The results of the attribute formation, c-value selection, regionalization and validation processes are presented and discussed in a comparative analysis. Based on the results it is recommended for both regions to use location parameters including latitude, longitude and distance to water bodies (in the Great Lakes region) to form precipitation regions and to consider atmospheric variables for future (climate change) applications of the regionalization procedure. 相似文献
3.
Long streamflow series and precipitation data are analysed in this study with aim to investigate changing properties of precipitation and associated impacts on hydrological processes of the Poyang Lake basin. Underlying causes behind the precipitation variations are also explored based on the analysis of the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis data. Besides, water intrusion from the Yangtze River to the Poyang Lake basin is studied. The results indicate that (1) seasonal transitions of precipitation are observed, showing increasing precipitation in winter, slight increase and even decrease of precipitation in summer; (2) analysis of water vapour circulation indicates decreasing/increasing water vapour flux in summer/winter; in winter, water vapour flux tends to be from the Pacific. Altered water vapour flux is the major cause behind the altered precipitation changes across the Poyang Lake basin and (3) occurrence of water intrusion from the Yangtze River to the Poyang Lake basin is heavily influenced by hydrological processes of the Poyang Lake basin. Effects of the hydrological processes from the middle Yangtze River on the occurrence of water intrusion events are not significant. The results of this study indicate that floods and droughts should share the same concerns from the scholars and policy makers. Besides, the altered hydrological circulation and associated seasonal transition of precipitation drive us to face new challenges in terms of conservations of wetlands and ecological environment under the changing climate. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
4.
The Yellow River headwaters region (YRHR) contributes nearly 40% of total flow in the Yellow River basin, which is suffering from a serious water shortage problem. Investigation of the relationship between runoff and climate variables is important for understanding the variation trend of runoff in the YRHR under global climate change. Global and local climate variables, including the West Pacific subtropical high; northern hemisphere polar vortex (NH); Tibetan Plateau Index B (TPI‐B); southern oscillation index; sea surface temperature; and precipitation, evaporation, and temperature, were fully considered to explore the relationship with runoff at Jimai, Maqu, and Tangnaihai stations from 1956 to 2014. The results reveal that runoff had a decreasing trend, which will likely be maintained in the future, and there was a significant change in runoff around 1995 at all stations. Correlation analysis indicated that runoff was dominated by precipitation, NH, temperature, and TPI‐B, and a substantial correlation was observed with sea surface temperature and evaporation, but there was little correlation with West Pacific subtropical high and southern oscillation index. Furthermore, impacts of climate change on runoff variations were distinctly different at different temporal scales. Three dominant runoff periodicities were identified by a singular spectrum analysis‐multitaper method and continuous wavelet transform, that is, 1.0‐, 6.9‐, and 24.8‐year runoff periodicities. In addition, runoff was positively correlated with temperature at a 1‐year periodicity, negatively correlated with TPI‐B at a 6.9‐year periodicity, and positively correlated with NH at a 24.8‐year periodicity, that is, temperature, TPI‐B, and NH‐controlled runoff at annual, interannual, and interdecadal scales. Further, all analyses of the stations in the YRHR showed excellent consistency. The results will provide valuable information for water resource management in the YRHR. 相似文献
5.
Jens M. Turowski Elowyn M. Yager Alexandre Badoux Dieter Rickenmann Peter Molnar 《地球表面变化过程与地形》2009,34(12):1661-1673
Sediment transport in the Erlenbach, a small stream with step‐pool morphology in the canton of Schwyz, Switzerland, has been monitored for more than 20 years. During this time three exceptional events (events with high sediment yield and long return times that have a large effect on channel morphology) have impacted the stream and partly or completely rearranged the existing step‐pool morphology. In the aftermath of the events, sediment transport rates at a given discharge and total sediment yield remained elevated for about a year or longer. For the last event, dated on the 20 June 2007, observations of boulder mobility and step destruction were used to interpret channel stability. Boulders with median diameters of up to 135 cm and estimated weights of more than 2·5 tons have moved during the 2007 event. Using hydraulic observations and shear stress calculations boulders up to 65 cm in diameter were predicted to have been fully mobile in peak conditions, even if form resistance and increased critical stresses needed for the initiation of motion in steep streams were taken into account. For two of the events, estimated peak shear stresses at the bed exceeded 1000 Pa, calculated both from observations of the flow hydraulics and from boulder mobility. This suggests that highly energetic flows occur relatively frequently in small, steep streams and that large boulders can be transported by fluvial processes in such streams. The observations have potential significance for hazard risk mitigation, stream engineering and restoration. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
Stable water isotope ratios are measured as a tracer of environmental processes in materials such as leaves, soils, and lakes. Water in these archives may experience evaporation, which increases the abundance of heavy isotopologues proportionally to the gradients in humidity and isotope ratio between the evaporating water and the surrounding atmosphere. The isotope ratio of the atmosphere has been difficult to measure until recently, and measurements remain scarce. As a result, several assumptions have been adopted to estimate isotope ratios of atmospheric water vapour. Perhaps the most commonly employed assumption in terrestrial environments is that water vapour is in isotopic equilibrium with precipitation. We evaluate this assumption using an eight‐member ensemble of general circulation model (GCM) simulations that include explicit calculation of isotope ratios in precipitation and vapour. We find that across the model ensemble, water vapour is typically less depleted in heavy isotopologues than expected if it were in equilibrium with annual precipitation. Atmospheric vapour likely possesses higher‐than‐expected isotope ratios because precipitation isotope ratios are determined by atmospheric conditions that favour condensation, which do not reflect atmospheric mixing and advection processes outside of precipitation events. The effect of this deviation on theoretical estimates of isotope ratios of evaporating waters scales with relative humidity. As a result, the equilibrium assumption gives relatively accurate estimates of the isotope ratios of evaporating waters in low latitudes but performs increasingly poorly at increasing latitudes. Future studies of evaporative water pools should include measurements of atmospheric isotope ratios or constrain potential bias with isotope‐enabled GCM simulations. 相似文献
7.
Analysis of uncertainties in the hydrological response of a model‐based climate change impact assessment in a subcatchment of the Spree River,Germany 下载免费PDF全文
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
Seasonal variations of deuterium and oxygen‐18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region 下载免费PDF全文
Deuterium and oxygen‐18 are common environmental tracers in water used to investigate hydrological processes such as evaporation and groundwater recharge, and to trace moisture source. In this study, we collected event precipitation from 01 January 2010 to 28 February 2011 at a site in Changsha, Yangtze River Basin to estimate the influence of moisture source and atmospheric conditions on stable isotope compositions. The local meteoric water line, established as δD = (8.45 ± 0.13) δ18O + (17.7 ± 0.9) (r2 = 0.97, n = 189), had a higher slope and intercept than global meteoric water line. Temperature–δ18O exhibited complex correlations, with positive correlations during Nov.–Apr. superior to during Jun.–Sep., which was attributed to distinctive moisture sources, but vague the overall period; amount effect examined throughout the year. Linear regressions between δ18O and δD value in different precipitation event size classes revealed progressively decreasing slope and intercept values with decreasing precipitation amount and increasing vapour pressure deficit, indicating that small rainfall events (0–5 mm) were subject to secondary evaporation effects during rainwater descent. In contrast, snowfall and heavy precipitation events exhibited high slope and intercepts for the regression equation between δ18O and δD. High concentrations of heavy isotopes were associated with precipitation events sourced from remote westerly air masses, degenerated tropical marine air masses from the Bay of Bengal (BoB), and inland moisture in the pre‐monsoon period, as determined from backward trajectories assessed in the HYSPLIT model. Meanwhile, low concentrations of heavy isotopes were found to correspond with remote maritime moisture from BoB, the South China Sea, and the west Pacific at three different air pressures in summer monsoon and post‐monsoon using HYSPLIT and records of typhoon paths. These findings suggest that stable isotope compositions in precipitation events are closely associated with the meteorological conditions and respond sensitively to moisture source in subtropical monsoon climates. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Trend and extreme occurrence of precipitation in a mid‐latitude Eurasian steppe watershed at various time scales 下载免费PDF全文
Xixi Wang Xiaomin Yang Tingxi Liu Fengling Li Ruizhong Gao Limin Duan Yanyun Luo 《水文研究》2014,28(22):5547-5560
The confounding effects of step change invalidate the stationarity assumption of commonly used trend analysis methods such as the Mann–Kendall test technique, so previous studies have failed to explain inconsistencies between detected trends and observed large precipitation anomalies. The objectives of this study were to (1) formulate a trend analysis approach that considers nonstationarity due to step changes, (2) use this approach to detect trends and extreme occurrences of precipitation in a mid‐latitude Eurasian steppe watershed in North China, and (3) examine how runoff responds to precipitation trends in the study watershed. Our results indicate that annual precipitation underwent a marginal step jump around 1995. The significant annual downward trend after 1994 was primarily due to a decrease in summer rainfall; other seasons exhibited no significant precipitation trends. At a monthly scale, July rainfall after 1994 exhibited a significant downward trend, whereas precipitation in other months had no trend. The percentage of wet days also underwent a step jump around 1994 following a significant decreasing trend, although the precipitation intensity exhibited neither a step change nor any significant trend. However, both low‐frequency and high‐frequency precipitation events in the study watershed occurred more often after than before 1994; probably as either a result or an indicator of climate change. In response to these precipitation changes, the study watershed had distinctly different precipitation‐runoff relationships for observed annual precipitations of less than 300 mm, between 300 and 400 mm, and greater than 400 mm. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Daniel J. Tappa Matthew J. Kohn James P. McNamara Shawn G. Benner Alejandro N. Flores 《水文研究》2016,30(24):4582-4592
The local meteoric water line (LMWL), the functional relationship between locally measured values of δ18O and δ2H in precipitation, represents the isotopic composition of water entering hydrologic systems. The degree to which the LMWL departs from the global meteoric water line (GMWL), moreover, can reveal important information about meteoric sources of water (e.g. oceanic or terrestrial) and atmospheric conditions during transport. Here we characterize the isotopic composition of precipitation within an experimental watershed in the Western US that is subject to large topographic and seasonal gradients in precipitation. Interpreting the hydrometeorologic and spatial controls on precipitation, we constructed a seasonally weighted LMWL for southwestern Idaho that is expressed by the equation δ2H = 7.40 × δ18O ? 2.17. A seasonally weighted LMWL that is based on weighting isotopic concentrations by climatic precipitation volumes is novel, and we argue better represents the significant seasonality of precipitation in the region. The developed LMWL is considerably influenced by the semiarid climate experienced in southwest Idaho, yielding a slope and y‐intercept lower than the GMWL (δ2H = 8 × δ18O + 10). Moderate to strong correlations exist between the isotopic composition of precipitation from individual events and surface meteorologic variables, specifically surface air temperature, relative humidity, and precipitation amount. A strong negative correlation exists between the annual average isotopic composition of precipitation and elevation at individual collection sites, with a lapse rate of ?0.22‰/100 m. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
Long‐term monitoring of a mercury contaminated estuary (Ria de Aveiro,Portugal): the effect of weather events and management in mercury transport 下载免费PDF全文
J. P. Coelho P. Pato B. Henriques A. Picado A. I. Lillebø J. M. Dias A. C. Duarte M. E. Pereira M. A. Pardal 《水文研究》2014,28(2):352-360
The main aim of this research was to assess the mercury transport from an estuarine basin with a background of anthropogenic contamination during a spring tidal cycle (year 2009) and compare it with two previous tidal cycles (years 1994 and 1999), as part of a long‐term monitoring program. Results showed that effective mercury transport occurs both in the dissolved and particulate fractions (0.18 and 0.20 kg per tidal cycle, respectively), and despite an overall decrease in environmental contamination, results more than double previous findings on particulate transport in the system. These findings result essentially from changes in the tidal prism (net export of 2 million m3 of water), given that both dissolved and particulate concentrations did not increase over time. Hydrodynamic simulations were performed to evaluate the effect of physical disturbance (dredging) and weather events (increased freshwater flow) in these processes, and results suggest the increased freshwater flow into the system as the main forcing function for the mercury transport increment. These results highlight the importance of long‐term monitoring programs, since despite an overall improvement in local contamination levels, the enhancement of transport processes through hydrological changes increases environmental pressure away from the contamination source. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Separating the effects of changes in land management and climatic conditions on long‐term streamflow trends analyzed for a small catchment in the Loess Plateau region,NW China 下载免费PDF全文
Lulu Zhang Christian Podlasly Ye Ren Karl‐Heinz Feger Yanhui Wang Kai Schwärzel 《水文研究》2014,28(3):1284-1293
As an integrated result of many driving factors, significant declines in streamflow were observed in many rivers of the Loess Plateau (NW China). This can aggravate the inherent severe water shortages and threatens the regional development. Therefore, it is urgent to develop adaptive measures to regulate the water yield to ensure water security. A key step for successful implementation of such measures is to separate the response of water yield to the main driving factors of land management and climate change. In this study, the variation of annual streamflow, precipitation, potential evapotranspiration, and climatic water balance in a small catchment in the Loess Plateau (near Pingliang, Gansu province) was examined for over five decades, although the relative contribution of changes in land management and climate on the streamflow reduction were estimated. A statistically significant decreasing trend of ‐1.14 mm y‐1 in annual streamflow was detected. Furthermore, an abrupt streamflow reduction because of construction of terraces and check‐dams was identified around 1980. Remarkably, 74% of the total reduction in mean annual streamflow can be attributed to the soil conservation measures. Based on a literature review across the Loess Plateau, we found that the impact of changes in land management and climate on annual streamflow diminished with increasing catchment size. This means that there is a dependency on catchment size for the hydrological response to environmental change. This indicates that at least at the local scale well‐considered land management may help ensure the water security at the Loess Plateau. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
Based on the precipitation data obtained through GEWEX Asian Monsoon Experiment–Tibet fieldwork from May to September 1998, this study investigated the features of the summer monsoon precipitation on the northern and southern slopes of the huge Tanggula Mountains in the Qinghai–Xizang (Tibetan) Plateau. The results show that the precipitation on the southern slope is about 50% higher than on the northern slope, whereas the frequency and diurnal pattern of the precipitation are very similar. The mean precipitation intensity on the southern slope is larger than on the northern slope. In most cases, the daily precipitation showed similar variation on both slopes, demonstrating that the precipitation processes might be similar. In the summer monsoon period, the local convective precipitation contributed to the total precipitation on both slopes and such a contribution on the southern slope is larger. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献