首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

2.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   

3.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   

4.
Climate change is altering river temperature regimes, modifying the dynamics of temperature‐sensitive fishes. The ability to map river temperature is therefore important for understanding the impacts of future warming. Thermal infrared (TIR) remote sensing has proven effective for river temperature mapping, but TIR surveys of rivers remain expensive. Recent drone‐based TIR systems present a potential solution to this problem. However, information regarding the utility of these miniaturised systems for surveying rivers is limited. Here, we present the results of several drone‐based TIR surveys conducted with a view to understanding their suitability for characterising river temperature heterogeneity. We find that drone‐based TIR data are able to clearly reveal the location and extent of discrete thermal inputs to rivers, but thermal imagery suffers from temperature drift‐induced bias, which prevents the extraction of accurate temperature data. Statistical analysis of the causes of this drift reveals that drone flight characteristics and environmental conditions at the time of acquisition explain ~66% of the variance in TIR sensor drift. These results shed important light on the factors influencing drone‐based TIR data quality and suggest that further technological development is required to enable the extraction of robust river temperature data. Nonetheless, this technology represents a promising approach for augmenting in situ sensor capabilities and improved quantification of advective inputs to rivers at intermediate spatial scales between point measurements and “conventional” airborne or satellite remote sensing.  相似文献   

5.
Coastal eutrophication poses an increasing risk to ecosystem health due to enhanced nutrient loading to the global coastline. Submarine groundwater discharge (SGD) represents a significant pathway for nitrate-nitrogen (NO3-N) transport to the coast, but diffusive SGD transport is difficult to monitor directly, given the low flux rates and expansive discharge areas. In contrast, focused SGD from intertidal springs can potentially be sampled and directly gauged, providing unique insight into SGD and associated contaminant transport. Basin Head is a coastal lagoon in Prince Edward Island, Canada that is a federally protected ecosystem. Nitrate-nitrogen is conveyed from agricultural fields in the contributing watershed to the eutrophic lagoon via intertidal groundwater springs and groundwater-dominated tributaries. We used several field methods to characterize groundwater discharge, nutrient loading, and in-channel mixing associated with intertidal springs. The tributaries and intertidal springs were gauged and sampled to estimate a representative summer nitrate load to the lagoon. Our analysis revealed that NO3-N export to the lagoon through tributaries and springs throughout summer 2023 was on average 401 kg N/month, with the combined spring loading comparable in magnitude to the combined tributary loading. We collected thermal infrared and visual imagery using drone surveys and found spatial overlap between cold-water plumes from the spring discharge and macroalgae blooms, indicating the local thermal and ecosystem impacts of the focused SGD. We also mapped the electrical resistivity (salinity) distribution in the water column around one large spring with electromagnetic geophysics at different tidal stages to reveal the three-dimensional spring plume dynamics. Results showed that the fresher spring water floated above the saline lagoon water with the brackish plume oriented in the direction of the tidal current. Collectively, our multi-pronged field investigations help elucidate the hydrologic, thermal, and nutrient dynamics of intertidal springs and the cascading ecosystem impacts.  相似文献   

6.
Ground‐based handheld thermal infrared imagery was used for the detection of small‐scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1–2 cm were observed along the beach at a distance of 2–3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3–5 °C higher) and a lower electric conductivity (<10 mS/cm) in contrast to the surrounding sea water (1–2 °C, >30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small‐scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground‐based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters.  相似文献   

7.
Phytoplankton community structure in coastal areas is a result of various environmental factors such as nutrients, light, grazing, temperature, and salinity. The Yucatan Peninsula is a karstic tropical region that is strongly influenced by submerged groundwater discharge (SGD) into the coastal zone. Phytoplankton community structure and its relationship with regional and local water quality variables were studied in four ports of the northwestern Yucatan Peninsula. Water quality was strongly related to SGD, and variations in phytoplankton community structure were related to local nutrient loading and hydrographic conditions, turbulence, and human impacts. Our study provides an ecological baseline for the Yucatan Peninsula and serves as a basis for establishing monitoring programs to predict changes at sites with high hydrological variation and in developing an early alert system for harmful toxic algal blooms.  相似文献   

8.
A large quantity of submarine groundwater discharge (SGD) of about 1000 m3 day?1 m?1 of the 600‐km‐long shoreline of South Atlantic Bight has been estimated by Moore (Global Biogeochemical Cycles, 2010b, 24, GB4005, doi: 10.1029/2009GB003747 ). However, there is great uncertainty in estimating the percentage of net, land‐originated groundwater recharge of SGD. Moreover, most previous studies considered the homogeneous case for the coastal superficial aquifers. Here, we investigated the terrestrial‐originated SGD through a multilayered submarine aquifer system, which comprises two confined aquifers and two semi‐permeable layers. The inland recharge includes a constant part representing the annual average and a periodical part representing its seasonal variation. An analytical solution was derived and used to analyse the distributions of the terrestrial‐originated SGD from the multilayered aquifers along the Winyah Bay transect, South Atlantic Bight. It is found that the width of the zone of SGD from the upper aquifer ranges from ~0.8 to ~8.0 km depending on the leakance of the seabed semi‐permeable layer. A head of the upper aquifer at a coastline 1.0 m higher than the mean sea level will cause a SGD of 1.82– 18.3 m3 day?1 m?1 from that aquifer as the seabed semi‐permeable layer's leakance varies from 0.001 to 0.1 day?1, providing considerable possibility for considerable land‐originated SGD. Seasonal terrestrial‐originated SGD variations predicted by the analytical model provide consistent explanation of the seasonal variation of 226Ra observed by Moore (Journal of Geophysics, 2007, 112, C10013, doi: 10.1029/2007JC004199 ). The contribution of the lower aquifer to SGD is only 1.2–12% of that of the upper aquifer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Along the tropical coastline of the Great Barrier Reef (GBR) region, little is known to date about submarine groundwater discharge (SGD) into the near-shore ocean. In an oceanographic sense, SGD consists of freshwater flow from land as well as seawater circulated through sediments. Recent radiochemical and geophysical studies, using the tracer (222)Rn and apparent ground conductivity respectively, provide evidence for SGD to occur in a variety of hydrogeological settings. In this paper, a non-quantitative overview of different settings of SGD in the region is presented: (1) recirculation of seawater through animal burrows in mangrove forests, (2) freshwater SGD from unconfined aquifers as a narrow coastal fringe of freshwater along Wet Tropics beaches, (3) SGD from coastal dune systems in form of localised freshwater springs in the intertidal zone, (4) inner-shelf SGD from confined submarine aquifer systems comprised of riverine paleochannels incised into the shelf.  相似文献   

10.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
To supplement conventional geophysical log data, this study presents temporal variations in electrical conductivity (EC) and temperature with depth in a multilayered coastal aquifer, on the eastern part of Jeju Island, Korea. One‐month time‐series data obtained at eight points from a multi‐depth monitoring system showed that semidiurnal and semimonthly tidal variations induced dynamic fluctuations in EC and temperature. At some depths, EC ranged from 1483 to 26 822 µS cm?1, while some points showed no significant variations. The results of EC log and time‐series data revealed that a sharp fresh‐saltwater interface occurred at low tide, but the diffusion zone broadened to 20 m at high tide. EC, temperature, and tide level data were used for the cross‐correlation analysis. The response time of EC and temperature to tide appears to range from less than 30 min to 11 h. Using end‐member mixing analysis (EMMA), the fraction of variations of chloride concentration in the multilayered aquifer was explained, and a conceptual model was developed which subdivided the coastal aquifer into four vertical zones. The percentage of water derived from seawater varied from 2 to 48 at specific depth, owing to tidal fluctuations. Continuous observations of EC and temperature at multiple depths are powerful tools for quantifying the transport of saline water by tidal variations in multilayered coastal aquifers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The Changjiang diluted water (CDW) around Jeju Island between 2002 and 2006 in response to external forcings, such as wind, tidal forcing and low river discharge, is studied using a three-dimensional model. The model results suggest that wind largely determines spatial differences of CDW and the freshwater export toward Jeju Island between two years. In 2006, when northwestward wind blows during mid June to mid August, the wind-induced Ekman flow causes a broad northeastward extension of CDW and carries a significant amount of freshwater northeastward Jeju Island in August. On the other hand, in 2002 northward wind during mid July to early August drives the CDW to the southwest of Jeju Island, and thereafter the CDW is mainly advected northeastward along the Cheju Current during mid August when the wind becomes weak. Therefore, the amount of freshwater around Jeju Island increases in September, not in August. The response to tidal forcing shows that tide-induced vertical mixing tends to enhance a meander of CDW around Changjiang Bank and shift the CDW flowing into the Yellow Sea southeastward toward Jeju Island. As a result, the amount of freshwater toward Jeju Island becomes larger than that in no-tides case. The summer low river discharge as a flood control scenario has little influence on the spatial behavior of CDW around Jeju Island although the discharge contributes to the amount of freshwater around Jeju Island.  相似文献   

13.
The influence of subterranean water discharge on phytoplankton was studied at two localities (Progreso and Dzilam) on the northern coast of the Yucatan Peninsula. Hydrographic and phytoplankton samples were taken monthly between September 1998 and August 1999. High concentration of silicate (>65 μmol L−1) and nitrate (>80 μmol L−1) and low salinity showed the influence of submerged groundwater discharge (SGD) in the area. In Dzilam, hydrological conditions shows low salinity and high concentration of nitrate and silicate favored from the SGD. Meanwhile, high concentrations of ammonium, nitrite, and phosphate at Progreso (>150 000 inhabitants) suggest mixing of SGD and domestic waste waters. Thick-valve pennate diatoms dominated at Dzilam while dinoflagellates dominated in Progreso. Hydrological differences in both study zones suggest that local forcings, and interaction between coastal water masses and SGD plays an important role in hydrological conditions and primary productivity in the coastal zone of Yucatan. The anthropogenic modified SGD in Progreso may affect the nutrient regime and phytoplankton community structure, and may be used as indicator of eutrophication.  相似文献   

14.
Abstract Ultramafic xenoliths found in alkali basalts from Jeju Island, Korea are mostly spinel lherzolites accompanied by subordinate amount of spinel harzburgites and pyroxenites. The combination of results from a two-pyroxene geothermometer and Ca-in-olivine geobarometer yields temperature–pressure (T–P) estimates for spinel peridotites that fall in experimentally determined spinel lherzolite field in CaO-Fe-MgO-Al2O3-SiO2-Cr2O3 (CFMASCr) system. These T–P data sets have been used to construct the Quaternary Jeju Island geotherm, which defines a locus from about 13 kbar at 880°C to 26 kbar at 1040°C. The geothermal gradient of Jeju Island is greater than that of the conventional conductive models, and may be as a result of a thermal perturbation by the heat input into the lithospheric mantle via the passage and emplacement of magma. Spinel–lherzolite is the main constituent rock-type of the lithospheric mantle beneath Jeju Island. Pyroxenites may be intercalated in peridotites at similar depth and temperature as re-equilibrated veins or lenses.  相似文献   

15.
Groundwater responses at 15 monitoring wells on Jeju Island were observed in relation to the magnitude 9.0 Tohoku Earthquake off the Pacific coast of Honshu, Japan, on 11 March 2011, at 14:46:23 h local time (05:46:24 h UTC time). In coastal areas, the groundwater level responses to the earthquake were oscillatory at 12 wells, and the range of the maximum groundwater level changes was 3–192.4 cm. The response durations were approximately 1–62 min. The relationship between the maximum groundwater level changes and the response durations displayed a high correlation coefficient (r = 0.81). Groundwater temperature changes were also observed at 7 of 12 wells 3–10 min after the seismic wave arrived, and the range was from 0.01 °C to 1.20 °C. In mid‐elevation areas, the groundwater level changes appeared in three different forms: oscillatory, spiky and persistent. The groundwater temperature changes were also observed at two wells. One indicated decreasing and recovering temperatures, and the other exhibited rising and persistent temperatures. The primary temperature changes occurred 5–6 min after the earthquake and 2–3 min after the seismic wave arrived. In addition, the electrical conductivities at the depth of the transition zone were monitored, and the responses to the earthquake appeared at all three wells. Although the electrical conductivity and temperature changes were not well understood, groundwater inflow and mixing were likely caused by the earthquake, and the responses were various and site specific. The responses to the earthquake were closely related to the hydrogeological characteristics at each monitoring well, and a more detailed hydrogeological characterization is needed to understand the mechanisms related to earthquakes in general. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This study is aimed to understand the hydraulic mechanism of coastal aquifer systems that include highly permeable layers (HPLs). These hydrologic conditions can be found in many volcanic islands that are composed of a series of lava flows discharged into sea or other standing body of water. In the first part, we developed a numerical model based on the geologic and hydrologic data obtained from the eastern Jeju Island, Korea, of which the aquifer contains clinker and hyaloclastite layers. The simulation results reproduced spatial location of fresh‐saline water interface, especially the abrupt decline of interface at the inland part and the thickness variation of transition zone along the cross‐section observed at the eastern Jeju coastal aquifer. We were able to find out that these phenomena are strongly related to the presence of the HPL. In the second part, quantitative analyses were conducted with the use of hypothetical models in order to understand the dynamic characteristics of coastal system that includes HPLs. A series of sensitivity studies were conducted to assess the effect of the horizontal length and vertical depth of HPL on the spatial location of the interface toe and the configuration of transition zone. Various case studies have shown that the seawater intruded into the inland more as the horizontal length of HPL was increased and its vertical depth was decreased. In other simulations including two HPLs, the vertical distance between these two HPLs primarily controlled the flow regime, flux variations, and the configuration of the transition zone. Finally, we performed simulations to evaluate the effect of a rising sea‐level. This study provides more understanding of how the presence of HPL controls the seawater intrusion processes, and the spatial configurations of fresh‐saline water interface at coastal aquifers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The distinctly different, εNd(0) values of the Atlantic, Indian, and Pacific Oceans requires that the residence time of Nd in the ocean (i.e., τNd) be on the order of, or less than, the ocean mixing time of ∼ 500–1500 yr. However, estimates of τNd, based on river influxes, range from 4000 to 15,000 yr, thus exceeding the ocean mixing time. In order to reconcile the oceanic Nd budget and lower the residence time by roughly a factor of 10, an additional, as yet unidentified, and hence “missing Nd flux” to the ocean is necessary. Dissolution of materials deposited on continental margins has previously been proposed as a source of the missing flux. In this contribution, submarine groundwater discharge (SGD) is examined as a possible source of the missing Nd flux. Neodymium concentrations (n = 730) and εNd(0) values (n = 58) for groundwaters were obtained from the literature in order to establish representative groundwater values. Mean groundwater Nd concentrations and εNd(0) values were used along with recent estimates of the terrestrial (freshwater) component of SGD (6% of river discharge on a global basis) to test whether groundwater discharge to the coastal oceans could account for the missing flux. Employing mean Nd concentrations of the compiled data base (i.e., 31.8 nmol/kg for all 730 analyses and 11.3 nmol/kg for 141 groundwater samples from a coastal aquifer), the global, terrestrial-derived SGD flux of Nd is estimated to range between 2.9 × 107 and 8.1 × 107 mol/yr. These estimates are of the same order of magnitude, and within a factor of 2, of the missing Nd flux (i.e., 5.4 × 107 mol/yr). Applying the SGD Nd flux estimates, the global average εNd(0) of SGD is predicted to be − 9.1, which is similar to our estimate for the missing Nd flux (− 9.2), and in agreement with the mean (± S.D.) εNd(0) measured in groundwaters (i.e., εNd(0) = −8.9 ± 4.2). The similarities in the estimated SGD Nd flux and corresponding εNd(0) values to the magnitude and isotope composition of the missing Nd flux are compelling, and suggest that discharge of groundwater to the oceans could account for the missing Nd flux. Future investigations should focus on quantifying the Nd concentrations and isotope compositions of groundwater from coastal aquifers from a variety of coastal settings, as well as the important geochemical reactions that effect Nd concentrations in subterranean estuaries in order to better constrain contributions of SGD to the oceanic Nd budget.  相似文献   

18.
In an aquifer system with complex hydrogeology, mixing of groundwater with different ages could occur associated with various flow pathways. In this study, we applied different groundwater age‐estimation techniques (lumped parameter model and numerical model) to characterize groundwater age distributions and the major pathways of nitrate contamination in the Gosan agricultural field, Jeju Island. According to the lumped parameter model, groundwater age in the study area could be explained by the binary mixing of the young groundwater (4–33 years) and the old water component (>60 years). The complex hydrogeologic regimes and local heterogeneity observed in the study area (multilayered aquifer, well leakage hydraulics) were particularly well reflected in the numerical model. The numerical model predicted that the regional aquifer of Gosan responded to the fertilizer applications more rapidly (mean age: 9.7–22.3 years) than as estimated by other models. Our study results demonstrated that application and comparison of multiple age‐estimation methods can be useful to understand better the flow regimes and the mixing characteristics of groundwater with different ages (pathways), and accordingly, to reduce the risk of improper groundwater management plans arising from the aquifer heterogeneity.  相似文献   

19.
Groundwater can be important in regulating stream thermal regimes in cold, temperate regions, and as such, it can be a significant factor for aquatic biota habits and habitats. Groundwater typically remains at a constant temperature through time; that is, it is warmer than surface water in winter and cooler in summer. Further, small tributaries are often dominated by groundwater during low flows of winter and summer. We exploit these thermal patterns to identify and delineate tributary/groundwater inputs along a frozen river (ice‐on) using publically available satellite data, and we tested the findings against airborne, thermal infrared (TIR) data. We utilize a supervised maximum likelihood classification (sMLC) to identify possible groundwater inputs while the river is in a frozen state (kappa coefficient of 96.77 when compared with visually delineated possible groundwater inputs). We then compare sMLC‐identified possible groundwater inputs with TIR‐classified groundwater inputs, which confirmed that there was no statistical difference (χ2 = .78), that is, confirming that groundwater inputs can be delineated in north temperate river systems using available satellite imagery of the system's frozen state. Our results also established the spatial extent and influence of possible groundwater inputs in two seasons. The thermal plumes were longer and narrower in winter; this is likely related to seasonal differences in dispersion regimes. We hypothesize that differences between summer and winter is related to either (a) tributaries that are modulated by shading in summer or (b) aquifer disconnection from the river in winter owing to frozen ground conditions and lack of aquifer recharge. This method of establishing tributary/groundwater inputs and contributions to surface water thermal regimes is relatively simple and can be useful for science and management as long as “ice cover exists”; that is, the system can achieve a frozen state.  相似文献   

20.
Coastal groundwater discharge (CGD) plays an important role in coastal hydrogeological systems as they are a water resource that needs to be managed, particularly in wetland areas. Despite its importance, identifying and monitoring CGD often presents physical and logistical constraints, restraining the application of more traditional submarine groundwater discharge surveying techniques. Here we investigate the capability of electrical resistivity imaging (ERI) in the Peníscola wetland (Mediterranean coast, Spain). ERI surveying made it possible to identify and delineate an ascending regional groundwater flow of thermal and Ra‐enriched groundwater converging with local flows and seawater intrusion. The continuous inputs of Ra‐rich groundwater have induced high activities of Ra isotopes and 222Rn into the marsh area, becoming among the highest previously reported in wetlands and coastal lagoons. Geoelectrical imaging enabled inferring focused upward discharging areas, leaking from the aquifer roof through a confining unit and culminating as spring pools nourishing the wetland system. Forward modelling over idealized subsurface configurations, borehole datasets, potentiometric records from standpipe piezometers, petrophysical analysis, and four natural and independent tracers (224Ra, 222Rn, temperature and salinity) permitted assessing the geoelectrical model and a derived hydrogeological pattern. The research highlights the potential of ERI to improve hydrogeological characterization of subsurface processes in complex contexts, with different converging flows. Additionally, a hydrogeological conceptual model for a groundwater‐fed coastal wetland was proposed, based on the integration of surveying datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号