首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
River water temperature is a common target of water quality models at the watershed scale, owing to its principal role in shaping biogeochemical processes and in stream ecology. Usually, models include physically‐based, deterministic formulations to calculate water temperatures from detailed meteorological information, which usually comes from meteorological stations located far from the river reaches. However, alternative empirical approaches have been proposed, that usually depend on air temperature as master variable. This study explored the performance of a semidistributed water quality application modelling river water temperature in a Mediterranean watershed, using three different approaches. First, a deterministic approach was used accounting for the different heat exchange components usually considered in water temperature models. Second, an empirical approximation was applied using the equilibrium temperature concept, assuming a linear relationship with air temperature. And third, a hybrid approach was constructed, in which the temperature equilibrium concept and the deterministic approach were combined. Results showed that the hybrid approach gave the best results, followed by the empirical approximation. The deterministic formulation gave the worst results. The hybrid approach not only fitted daily river water temperatures, but also adequately modelled the daily temperature range (maximum–minimum daily temperature). Other river water features directly dependent on water temperature, such as river intrusion depth in lentic systems (i.e. the depth at which the river inflow plunges to equilibrate density differences with lake water), were also correctly modelled even at hourly time steps. However, results for the different heat fluxes between river and atmosphere were very unrealistic. Although direct evidence of discrepancies between meteorological drivers measured at the meteorological stations and the actual river microclimate was not found, the use of models including empirical or hybrid formulations depending mainly on air temperature is recommended if only meteorological data from locations far from the river reaches are available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The objective of this study was to analyse stream temperature variability during summer in relation to both surface heat exchanges and reach‐scale hydrology for two hydrogeomorphically distinct reaches. The study focused on a 1·5‐km wildfire‐disturbed reach of Fishtrap Creek located north of Kamloops, British Columbia. Streamflow measurements and longitudinal surveys of electrical conductivity and water chemistry indicated that the upper 750 m of the study reach was dominated by flow losses. A spring discharged into the stream at 750 m below the upper reach boundary. Below the spring, the stream was neutral to losing on three measurement days, but gained flow on a fourth day that followed a rain event. Continuous stream temperature measurements typically revealed a downstream warming along the upper 750 m of the study reach on summer days, followed by a pronounced cooling associated with the spring, with little downstream change below the spring. Modelled surface energy exchanges were similar over the upper and lower sub‐reaches, and thus cannot explain the differences in longitudinal temperature patterns. Application of a Lagrangian stream temperature model provided reasonably accurate predictions for the upper sub‐reach. For the lower sub‐reach, accurate prediction required specification of concurrent flow losses and gains as a hydrological boundary condition. These findings are consistent with differences in the hydrogeomorphology of the upper and lower sub‐reaches. The modelling exercise indicated that substantial errors in predicted stream temperature can occur by representing stream‐surface exchange as a reach‐averaged one‐directional flux computed from differences in streamflow between the upper and lower reach boundaries. Further research should focus on reliable methods for quantifying spatial variations in reach‐scale hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
J.J. Dick  D. Tetzlaff  C. Soulsby 《水文研究》2015,29(14):3098-3111
We monitored temperatures in stream water, groundwater and riparian wetland surface water over 18 months in a 3.2‐km2 moorland catchment in the Scottish Highlands. The stream occupies a glaciated valley, aligned east–west. It has three main headwater tributaries with a large north facing catchment, a south facing catchment and the smallest east facing headwater. The lower catchment sampling locations begin after the convalescence of all three headwaters. Much of the stream network is fringed by riparian peatlands. Stream temperatures are mainly regulated by energy exchanges at the air–water interface. However, they are also influenced by inflows from the saturated riparian zone, where surface water source areas are strongly connected with the stream network. Consequently, the spatial distribution of stream temperatures exhibits limited variability. Nevertheless, there are significant summer differences between the headwaters, despite their close proximity to each other. This is consistent with aspect (and incident radiation), given the south and east facing headwaters having higher temperatures. The largest, north‐facing sub‐catchment shows lower summer diurnal temperature variability, suggesting that lower radiation inputs dampen temperature extremes. Whilst stream water temperature regimes in the lower catchment exhibit little change along a 1‐km reach, they are similar to those in the largest headwater; probably reflecting size and comparable catchment aspect and hydrological flow paths. Our results suggest that different parts of the channel network and its connected wetlands have contrasting sensitivity to higher summer temperatures. This may be important in land management strategies designed to mitigate the impacts of projected climatic warming. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
《水文科学杂志》2013,58(3):640-655
Abstract

Water temperature is an important abiotic variable in aquatic habitat studies and may be one of the factors limiting the potential fish habitat (e.g. salmonids) in a stream. Stream water temperatures are modelled using statistical approaches with air temperature and streamflow as exogenous variables in the Nivelle River, southern France. Two different models are used to model mean weekly maximum temperature data: a non-parametric approach, the k-nearest neighbours method (k-NN) and a parametric approach, the periodic autoregressive model with exogenous variables (PARX). The k-NN is a data-driven method, which consists of finding, at each point of interest, a small number of neighbours nearest to this value, and the prediction is estimated based on these neighbours. The PARX model is an extension of commonly-used autoregressive models in which parameters are estimated for each period within the years. Different variants of air temperature and flow are used in the model development. In order to test the performance of these models, a jack-knife technique is used, whereby model goodness of fit is assessed separately for each year. The results indicate that both models give good performances, but the PARX model should be preferred, because of its good estimation of the individual weekly temperatures and its ability to explicitly predict water temperature using exogenous variables.  相似文献   

5.
6.
Successful applications of stochastic models for simulating and predicting daily stream temperature have been reported in the literature. These stochastic models have been generally tested on small rivers and have used only air temperature as an exogenous variable. This study investigates the stochastic modelling of daily mean stream water temperatures on the Moisie River, a relatively large unregulated river located in Québec, Canada. The objective of the study is to compare different stochastic approaches previously used on small streams to relate mean daily water temperatures to air temperatures and streamflow indices. Various stochastic approaches are used to model the water temperature residuals, representing short‐term variations, which were obtained by subtracting the seasonal components from water temperature time‐series. The first three models, a multiple regression, a second‐order autoregressive model, and a Box and Jenkins model, used only lagged air temperature residuals as exogenous variables. The root‐mean‐square error (RMSE) for these models varied between 0·53 and 1·70 °C and the second‐order autoregressive model provided the best results. A statistical methodology using best subsets regression is proposed to model the combined effect of discharge and air temperature on stream temperatures. Various streamflow indices were considered as additional independent variables, and models with different number of variables were tested. The results indicated that the best model included relative change in flow as the most important streamflow index. The RMSE for this model was of the order of 0·51 °C, which shows a small improvement over the first three models that did not include streamflow indices. The ridge regression was applied to this model to alleviate the potential statistical inadequacies associated with multicollinearity. The amplitude and sign of the ridge regression coefficients seem to be more in agreement with prior expectations (e.g. positive correlation between water temperature residuals of different lags) and make more physical sense. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The thermal regimes of alpine streams remain understudied and have important implications for cold‐water fish habitat, which is expected to decline due to climatic warming. Previous research has focused on the effects of distributed energy fluxes and meltwater from snowpacks and glaciers on the temperature of mountain streams. This study presents the effects of the groundwater spring discharge from an inactive rock glacier containing little ground ice on the temperature of an alpine stream. Rock glaciers are coarse blocky landforms that are ubiquitous in alpine environments and typically exhibit low groundwater discharge temperatures and resilience to climatic warming. Water temperature data indicate that the rock glacier spring cools the stream by an average of 3 °C during July and August and reduces maximum daily temperatures by an average of 5 °C during the peak temperature period of the first two weeks in August, producing a cold‐water refuge downstream of the spring. The distributed stream surface and streambed energy fluxes are calculated for the reach along the toe of the rock glacier, and solar radiation dominates the distributed stream energy budget. The lateral advective heat flux generated by the rock glacier spring is compared to the distributed energy fluxes over the study reach, and the spring advective heat flux is the dominant control on stream temperature at the reach scale. This study highlights the potential for coarse blocky landforms to generate climatically resilient cold‐water refuges in alpine streams.  相似文献   

8.
Identification of the most sensitive hydrological regions to a changing climate is essential to target adaptive management strategies. This study presents a quantitative assessment of spatial patterns, inter‐annual variability and climatic sensitivity of the shape (form) and magnitude (size) of annual river/stream water temperature regimes across England and Wales. Classification of long‐term average (1989–2006) annual river (air) temperature regime dynamics at 88 (38) stations within England and Wales identified spatially differentiable regions. Emergent river temperature regions were used to structure detailed hydroclimatological analyses of a subset of 38 paired river and air temperature stations. The shape and magnitude of air and water temperature regimes were classified for individual station‐years; and a sensitivity index (SI, based on conditional probability) was used to quantify the strength of associations between river and air temperature regimes. The nature and strength of air–river temperature regime links differed between regions. River basin properties considered to be static over the timescale of the study were used to infer modification of air–river temperature links by basin hydrological processes. The strongest links were observed in regions where groundwater contributions to runoff (estimated by basin permeability) were smallest and water exposure time to the atmosphere (estimated by basin area) was greatest. These findings provide a new large‐scale perspective on the hydroclimatological controls driving river thermal dynamics and, thus, yield a scientific basis for informed management and regulatory decisions concerning river temperature within England and Wales. © 2013 The Authors. Hydrological Processes published by John Wiley & Sons, Ltd.  相似文献   

9.
Seven longitudinal water temperature tow surveys were conducted to attempt to identify the location of surface and subsurface river water exchanges along the length of the West River at the Cape Bounty Arctic Watershed Observatory, Melville Island, Nunavut, Canada (74°55′ N, 109°35′ W). Water temperature data were collected using a calibrated thermistor with an accuracy of ±0.002 °C (resolution <0.00005 °C) along the river during July 2014 in conjunction with stable water isotope sampling to support the thermal data and to determine the extent of surface water mixing from different sources such as precipitation, snowmelt, and surface/subsurface water contributions to the river. Atmospheric conditions were found to be the main contributor to seasonal temperature variance in the river, whereas tributary inflows and residual channel snow also had important thermal effects to river temperatures. Residual channel snow was a sustained source of cold water during much of the 2014 summer season (June–August) and substantially offset downstream warming. The longitudinal temperature profiles indicate notable changes to the thermal state of the river, which are interpreted to be indicative of subsurface and surface water exchange through inputs of relatively cold or warm water. Broadly, surface inflows were found to provide warmer water relative to the West River, and contributed to downstream warming of the river, along with downstream enrichment of δD and δ18O. Subsurface inflows provided cooler water relative to the river, and contributed to downstream depletion of δD and δ18O and downstream cooling of river temperatures. These results demonstrate that localized changes in river temperature, in conjunction with isotopic tracers, can be used to track channel–slope water interactions in Arctic hydrological systems, work previously limited to alpine and temperate settings.  相似文献   

10.
Although stream temperature energy balance models are useful to predict temperature through time and space, a major unresolved question is whether fluctuations in stream discharge reduce model accuracy when not exactly represented. However, high‐frequency (e.g., subdaily) discharge observations are often unavailable for such simulations, and therefore, diurnal streamflow fluctuations are not typically represented in energy balance models. These fluctuations are common due to evapotranspiration, snow pack or glacial melt, tidal influences within estuaries, and regulated river flows. In this work, we show when to account for diurnally fluctuating streamflow. To investigate how diurnal streamflow fluctuations affect predicted stream temperatures, we used a deterministic stream temperature model to simulate stream temperature along a reach in the Quilcayhuanca Valley, Peru, where discharge varies diurnally due to glacial melt. Diurnally fluctuating streamflow was varied alongside groundwater contributions via a series of computational experiments to assess how uncertainty in reach hydrology may impact simulated stream temperature. Results indicated that stream temperatures were more sensitive to the rate of groundwater inflow to the reach compared with the timing and amplitude of diurnal fluctuations in streamflow. Although incorporating observed diurnal fluctuations in discharge resulted in a small improvement in model RMSE, we also assessed other diurnal discharge signals and found that high amplitude signals were more influential on modelled stream temperatures when the discharge peaked at specific times. Results also showed that regardless of the diurnal discharge signal, the estimated groundwater flux to the reach only varied from 1.7% to 11.7% of the upstream discharge. However, diurnal discharge fluctuations likely have a stronger influence over longer reaches and in streams where the daily range in discharge is larger, indicating that diurnal fluctuations in stream discharge should be considered in certain settings.  相似文献   

11.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   

12.
过对NOAA卫星热红外亮温与野外安装气象观测站接收的气温、地下不同深度地温(0.2, 0.5, 1.5,2 m)进行不同方式的对比研究,分析了卫星热红外亮温、气温、地下不同深度地温的变化特征,探讨了亮温与气温及不同深度地温之间的关系.结果表明:① 卫星热红外亮温观测,由于受天气、云层短周期因素变化影响,曲线呈现高频突跳特征,但按最大值拟合出的亮温曲线有较好的年变变化规律;② 浅层地温受气温及太阳辐射的影响较大,能够体现出日变化,表现出很好的季节变化规律;③ 深层地温年变平稳, 年变变化与季节相关.但与气温相比,表现出滞后效应,且深度越深,滞后时间越长;④ 亮温、气温及深度0.2 m地温三者之间呈现很好的相关性.亮温、气温、0.2 m地温的极值几乎同时段出现,都符合季节变化.分析表明,亮温能够真实地反映地表温度的变化情况,能够为利用卫星热红外亮温提取地震异常信息提供可靠准确证据.本研究结果为理解不同观测属性及其相互关系,以及更好地为地震监测应用提供了基础.   相似文献   

13.
This paper investigates three categories of models that are derived from the equilibrium temperature concept to estimate water temperatures in the Loire River in France and the sensitivity to changes in hydrology and climate. We test the models' individual performances for simulating water temperatures and assess the variability of the thermal responses under the extreme changing climate scenarios that are projected for 2081–2100. We attempt to identify the most reliable models for studying the impact of climate change on river temperature (Tw). Six models are based on a linear relationship between air temperatures (Ta) and equilibrium temperatures (Te), six depend on a logistic relationship, and six rely on the closure of heat budgets. For each category, three approaches that account for the river's thermal exchange coefficient are tested. In addition to air temperatures, an index of day length is incorporated to compute equilibrium temperatures. Each model is analysed in terms of its ability to simulate the seasonal patterns of river temperatures and heat peaks. We found that including the day length as a covariate in regression‐based approaches improves the performance in comparison with classical approaches that use only Ta. Moreover, the regression‐based models that rely on the logistic relationship between Te and Ta exhibit root mean square errors comparable (0.90 °C) with those obtained with a classical five‐term heat budget model (0.82 °C), despite a small number of required forcing variables. In contrast, the regressive models that are based on a linear relationship Te = f(Ta) fail to simulate the heat peaks and are not advisable for climate change studies. The regression‐based approaches that are based on a logistic relationship and the heat balance approaches generate notably similar responses to the projected climate changes scenarios. This similarity suggests that sophisticated thermal models are not preferable to cruder ones, which are less time‐consuming and require fewer input data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This study compared summer stream temperature between two years in the Star Creek catchment, Alberta, a headwater basin on the eastern slopes of the Canadian Rocky Mountains. Star Creek is a subsurface water dominated stream, which represents important habitat for native salmonid species. Hydrometeorological data from May to September of 2010 and 2011 accompanied by stream energy budget calculations were used to describe the drivers of stream temperature in this small forested stream. Mean, maximum, and minimum weekly stream temperatures were lower from May to August and higher in September 2011 compared to 2010. Weekly range in stream temperature was also different between years with a higher range in 2010. Inter‐annual stream temperature variation was attributed discharge differences between years, shown to be primarily governed by catchment‐scale moisture conditions. This study demonstrates that both meteorological and hydrological processes must be considered in order to understand stream temperature response to changing environmental conditions in mountainous regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
F. Ashkar 《水文科学杂志》2013,58(6):1092-1106
Abstract

The potential is investigated of the generalized regression neural networks (GRNN) technique in modelling of reference evapotranspiration (ET0) obtained using the FAO Penman-Monteith (PM) equation. Various combinations of daily climatic data, namely solar radiation, air temperature, relative humidity and wind speed, are used as inputs to the ANN so as to evaluate the degree of effect of each of these variables on ET0. In the first part of the study, a comparison is made between the estimates provided by the GRNN and those obtained by the Penman, Hargreaves and Ritchie methods as implemented by the California Irrigation Management System (CIMIS). The empirical models were calibrated using the standard FAO PM ET0 values. The GRNN estimates are also compared with those of the calibrated models. Mean square error, mean absolute error and determination coefficient statistics are used as comparison criteria for the evaluation of the model performances. The GRNN technique (GRNN 1) whose inputs are solar radiation, air temperature, relative humidity and wind speed, gave mean square errors of 0.058 and 0.032 mm2 day?2, mean absolute errors of 0.184 and 0.127 mm day?1, and determination coefficients of 0.985 and 0.986 for the Pomona and Santa Monica stations (Los Angeles, USA), respectively. Based on the comparisons, it was found that the GRNN 1 model could be employed successfully in modelling the ET0 process. The second part of the study investigates the potential of the GRNN and the empirical methods in ET0 estimation using the nearby station data. Among the models, the calibrated Hargreaves was found to perform better than the others.  相似文献   

16.
ABSTRACT

The article discusses the range and course of changes in the thermal regime of 14 rivers in Poland over the period 1961–2010. Eleven rivers are located in the Central European Plain, and the others flow in the foothills of the Carpathians Mountains. Statistical analyses take into consideration the results of daily measurements of water temperature carried out at 16 hydrological stations by the Institute of Meteorology and Water Management—National Research Institute. In the first part of the analysed period (1961–1986) water temperature in most rivers declined in relation to its mean value for the entire study period (1961–2010). In 1987 there was a reverse trend: the temperature started rising. The fastest increase in water temperature was recorded in the western part of the study area, and it became slower towards the east. In the southern part of the study area (the foothills) changes of that kind were not observed. The mean yearly temperature of fluvial waters in the Central European Plain showed a positive trend, ranging from 0.17 to 0.27°C (10 years)-1, whereas it did not change in the rivers in the foothills of the Carpathians Mountains. Its fastest rise was recorded in spring, and it reached from 0.08 to 0.43°C (10 years)-1. The increase in water temperature correlated strongly with rising air temperature. The temperature of river waters in the lowlands is believed to be a good indicator of climatic changes.
Editor M.C. Acreman Associate editor T. Okruszko  相似文献   

17.
Irrigation activities alter water distribution and storage in arid and semi-arid regions worldwide. The removal of water from streams can drastically impact instream flows. However, irrigation water conveyance and application onto fields can create surface and subsurface hydrologic connections, or lateral inflows, that return some of this diverted water back to streams. Prior research has shown the impact of surface water diversions from streams on downstream warming that increases stress on aquatic species. However, the combined effects of flow depletion and irrigation-enhanced lateral inflows on stream temperature and river ecosystems remains poorly studied. To further understand these relationships, we combined intensive field monitoring over three irrigation seasons and thermal aerial imagery to identify irrigation-enhanced subsurface lateral inflow locations and evaluate their effects on stream flow and temperature patterns over a 2.5-km highly depleted study reach. Considering variable hydrology, weather, flow diversions, channel geometry and lateral inflows, we found irrigation-enhanced lateral inflows were the likely explanation for buffered longitudinal and diel warming patterns that prevented stressful or lethal thermal conditions for brown trout. These localized temperature effects were more pronounced in drier years, under high diversion rates and during high solar radiation intensity. We also found that lateral inflows corresponded with greater spatial variability of stream temperatures and potential thermal refugia. Study results illustrate the potential ecological consequences of reducing irrigation-enhanced lateral inflows and highlight the importance of hydrologic monitoring in irrigated arid river valleys. The role and preservation of these lateral inflows should be considered in water resources management related to irrigation efficiency and environmental flows.  相似文献   

18.
The study of the dynamics of anthropic disturbances that have an effect on the hydrological systems in plains requires integral simulation tools for their diagnosis. The objective of this article is, first, to analyse and reproduce the spatio-temporal interactions between groundwater (GW) and surface water, net recharge, GW level, surface run-off, and evapotranspiration in the upper creek basin of Del Azul, which is located in the centre of the province of Buenos Aires, Argentina, and second, to obtain insights to apply the methodology to other similar situations. For this purpose, a model coupling the semidistributed hydrological model (Soil and Water Assessment Tool [SWAT]) and the hydrogeological model (MODFLOW) has been used. A simulation was carried out for a period of 13 years (2003–2015) on a daily scale. The application of the SWAT–MODFLOW coupling gave good results based on the adjustment between the calculated flows and levels, reaching a Nash–Sutcliffe of 0.6 and R20.6 at the Seminario hydrometric station located at the watershed outlet point. According to the annual average balance, out of the total rainfall, evapotranspiration accounts for 85%, recharge accounts for 10.2%, and surface run-off accounts for 4.8%. Annual and monthly trends of the stream–aquifer interaction were determined, obtaining on average an annual GW discharge of 34 mm and an annual average recharge of the stream to the aquifer of 1.4 mm. Monthly GW discharges are higher in winter–spring (July to December with an average of 3.3 mm) and lower in summer–autumn (January to June with an average of 2.8 mm). The monthly average recharge of the stream towards the aquifer varies from 0.02 to 0.36 mm and is higher in March, May, and August, when water excess is produced in the basin. Through the analysis of coupled modelling, it is possible to analyse and reproduce the spatio-temporal transitions of flow existing between the stream, the hyporheic zone, and the aquifer.  相似文献   

19.
Abstract

Hydrological processes of the wetland complex in the Prairie Pothole Region (PPR) are difficult to model, partly due to a lack of wetland morphology data. We used Light Detection And Ranging (LiDAR) data sets to derive wetland features; we then modelled rainfall, snowfall, snowmelt, runoff, evaporation, the “fill-and-spill” mechanism, shallow groundwater loss, and the effect of wet and dry conditions. For large wetlands with a volume greater than thousands of cubic metres (e.g. about 3000 m3), the modelled water volume agreed fairly well with observations; however, it did not succeed for small wetlands (e.g. volume less than 450 m3). Despite the failure for small wetlands, the modelled water area of the wetland complex coincided well with interpretation of aerial photographs, showing a linear regression with R2 of around 0.80 and a mean average error of around 0.55 km2. The next step is to improve the water budget modelling for small wetlands.

Editor Z.W. Kundzewicz; Associate editor X. Chen

Citation Huang, S.L., Young, C., Abdul-Aziz, O.I., Dahal, D., Feng, M., and Liu, S.G., 2013. Simulating the water budget of a Prairie Potholes complex from LiDAR and hydrological models in North Dakota, USA. Hydrological Sciences Journal, 58 (7), 1434–1444.  相似文献   

20.
Despite the known importance of water temperature for river ecosystems, the thermal regime of streams and rivers can be heavily modified by afforestation. Although the nature of the heat budget affecting streams in forested catchments shows high variability in space and time, most of the studies of stream temperature response to afforestation have lacked replication among streams. This study examined the impacts of coniferous forest plantations on stream water temperature at six sites (three forested and three open moorland) in the Yorkshire Dales, northern England. Our aim was to test the hypothesis that afforestation would alter the thermal regime of streams, leading to reduced year‐round thermal variability, and cooler summer/warmer winter water temperatures, relative to streams flowing across open moorland. Data collected from April 2007 to March 2009 showed similar thermal dynamics among all six streams over the study period, although variability in forested streams was markedly lower as expected. Mean and maximum daily water temperatures were significantly higher in open moorland streams for much of the year but while some forested streams were warmer than individual moorland streams during winter months (November to February), there was considerable overlap in water temperature between moorland and forest streams. Most stream temperature records showed evidence of low/no winter flow and freezing. These results contrast with many previous studies that have reported warmer temperatures in forested versus open moorland streams during winter, a finding that most likely reflects site‐specific hydrological, geomorphological and climatological influences on water temperature in addition to afforestation. This study demonstrates the need for replication of hydrological monitoring when examining the effects of basin‐scale management practices and provides further evidence for changes in stream thermal regime following afforestation, a practice that is likely to increase in future due to growing demands for increased forest cover in the UK uplands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号