首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Storm sewer systems and their associated utility trenches may strongly influence the effects of urbanization on a groundwater system. This study was undertaken to identify the causes of district-wide basement infiltration in an aquitard system. It comprised widespread continuous monitoring of utility trench wells and dye tracing from storm sewer system exfiltration tests. The results indicate that a major effect of urbanization on shallow groundwater is related to storm sewer system exfiltration, which is marked by a characteristic pattern of head variations in the aquitard unrelated to distributed surface infiltration. The aquitard constrains flow from storm sewer system exfiltration to the utility trench, creating an urban flow path for groundwater discharge. Temporary buildup of water levels in the utility trench drives relatively high-velocity flow through the permeable sewer bedding material of the utility trench to a separate foundation drainage collector system, ultimately causing a severe “urban karst” effect that produces system surcharging and widespread basement water infiltration. The main conditions causing the “urban karst” are the large hydraulic conductivity ratio between the utility trench material and the aquitard, and the shallow depth and low gradient of the storm sewer system imposed by a very flat drainage basin.  相似文献   

3.
Distributed, infiltration‐based approaches to stormwater management are being implemented to mitigate effects of urban development on water resources. One of the goals of this type of storm water management, sometimes called low impact development or green infrastructure, is to maintain groundwater recharge and stream base flow at predevelopment levels. However, the connection between infiltration‐based stormwater management and groundwater recharge is not straightforward. Water infiltrated through stormwater facilities may be stored in soil moisture, taken up by evapotranspiration or contribute to recharge and eventually base flow. This study focused on a 1.1 km2 suburban, low impact development watershed in Clarksburg, Maryland, USA, that was urbanized and contained 73 infiltration‐based stormwater facilities. Continuous water table measurements were used to quantify the movement of infiltrated stormwater. Time series analyses were performed on hydrographs of 7 wells, and the episodic master recession method was used. Persistence in water levels, as measured by autocorrelation function, was found to be positively related to depth to water. Storm properties (precipitation rate and duration) and well location (proximity to the nearest stream) were significant in driving episodic recharge to precipitation ratios. The well that had the highest recharge to precipitation ratios and water table rises of up to 1.5 m in response to storm events was located furthest from the stream and down gradient of stormwater infiltration locations. This work may be considered in evaluating the effects of planned watershed‐scale infiltration‐based stormwater management on groundwater flow systems.  相似文献   

4.
As Andean glaciers rapidly retreat due to climate change, the balance of groundwater and glacial meltwater contributions to stream discharge in tropical, proglacial watersheds will change, potentially increasing vulnerability of water resources. The Shullcas River Watershed, near Huancayo, Peru, is fed only partly by the rapidly receding Huaytapallana glaciers (<20% of dry season flow). To potentially increase recharge and therefore increase groundwater derived baseflow, the government and not‐for‐profit organizations have installed trenches along large swaths of hillslope in the Shullcas Watershed. Our study focuses on a nonglacierized subcatchment of the Shullcas River Watershed and has 2 objectives: (a) create a model of the Shullcas groundwater system and assess the controls on stream discharge and (b) investigate the impact of the infiltration trenches on recharge and baseflow. We first collected hydrologic data from the field including a year‐long hydrograph (2015–2016), meteorological data (2011–2016), and infiltration measurements. We use a recharge model to evaluate the impact of trenched hillslopes on infiltration and runoff processes. Finally, we use a 3‐dimensional groundwater model, calibrated to the measured dry season baseflow, to determine the impact of trenching on the catchment. Simulations show that trenched hillslopes receive approximately 3.5% more recharge, relative to precipitation, compared with unaltered hillslopes. The groundwater model indicates that because the groundwater flow system is fast and shallow, incorporating trenched hillslopes (~2% of study subcatchment area) only slightly increases baseflow in the dry season. Furthermore, the location of trenching is an important consideration: Trenching higher in the catchment (further from the river) and in flatter terrain provides more baseflow during the dry season. The results of this study may have important implications for Andean landscape management and water resources.  相似文献   

5.
Periodic paddy field flooding is a major source of groundwater recharge. Many paddy fields thus are used as groundwater recharge ponds after harvesting the first crop of the summer. Following rice harvesting, paddy field surfaces may crack into fissures as a result of drainage and exposure to sunlight. Field observation indicates that applying precipitation to the paddy field can increase the rate of infiltration. To quantitatively evaluate the amount of infiltration in a cracked paddy field, this study sets up a simple soil crack model to simulate the field infiltration process. A three‐dimensional groundwater model FEMWATER is adopted to simulate water movement in the paddy field subjected to various crack conditions. Using the field and laboratory data of irrigation water requirements, soil physical properties, hydraulic conductivities and soil profiles obtained from Ten‐Chung, FEMWATER simulates the water movement in the dry cracked paddy. Simulation results show that if the cracks develop extensively and penetrate the ploughed soil, the infiltration rate may increase significantly. The infiltration fluxes of crack with depths of 80, 60 and 27·5 cm are 18·77, 14·50 and 8·06 times higher than that of 20 cm, respectively. The simulation results of cracks with 80 cm depth correlated closely with field observations. The results of the study elucidate the processes of unsaturated water movement in a dry cracked paddy field. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid‐rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult‐to‐use models. To address the need for a simple and easy‐to‐use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two‐dimensional, constant‐density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature‐dependent cation exchange. VS2DRTI is freely available public domain software.  相似文献   

7.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   

8.
This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two‐way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage‐like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface‐Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales.  相似文献   

9.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

10.
A three‐dimensional numerical modelling system is developed to study transformation processes of water resources in alluvial fan and river basin along the middle reaches of the Heihe River Basin, Northwest China, an arid and semi‐arid region. Integrating land utilization, remote sensing and geographic information systems, we have developed a numerical modelling system that can be used to quantify the effects of land use and anthropogenic activities on the groundwater system as well as to investigate the interaction between surface water and groundwater. Various hydraulic measurements are used to identify and calibrate the hydraulic boundary conditions and spatial distributions of hydraulic parameters. In the modelling study, various water exchanges and human effects on the watershed system are considered. These include water exchange between surface water and groundwater, groundwater pumping, lateral water recharges from mountain areas, land utilization, and infiltration and evaporation in the irrigation and non‐irrigation areas. The modelling system provides a quantitative method to describe spatial and temporal distributions and transformations between various water resources, and it has application to other watersheds in arid and semi‐arid areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This work presents a new design of disc infiltrometer, which, associated with a microflowmeter (MF) and a solenoid valve set, makes it possible to automate the infiltration rate (Q) measurements at different soil pressure heads (ψ). The MF consists of a 13·8‐cm long and 1·5 mm i.d. pipe, with a pressure transducer connecting the two ends of the MF, inserted in a water‐flow pipe that connects the Mariotte tube and the water‐supply reservoir of the disc infiltrometer. Water flow is calculated from the head losses in the MF. Changes in ψ in the bubble tower, automatically affected when the infiltration rate reaches steady state, are controlled by a datalogger connected to four solenoid valves. The new design was tested in laboratory and field conditions, and the results showed that the MF allows the soil water infiltration rates to be correctly estimated for different soil characteristics. The solenoid valve set plus datalogger system satisfactorily monitored the changes in ψ and allowed the measurement time to be optimized. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
One of the aims of sewer networks is the protection of population against floods and the reduction of pollution rejected to the receiving water during rainy events. To meet these goals, managers have to equip the sewer networks with and to set up real-time control systems. Unfortunately, a component fault (leading to intolerable behaviour of the system) or sensor fault (deteriorating the process view and disturbing the local automatism) makes the sewer network supervision delicate. In order to ensure an adequate flow management during rainy events it is essential to set up procedures capable of detecting and diagnosing these anomalies.

This article introduces a real-time fault detection method, applicable to sewer networks, for the follow-up of rainy events. This method consists in comparing the sensor response with a forecast of this response. This forecast is provided by a model and more precisely by a state estimator: a Kalman filter. This Kalman filter provides not only a flow estimate but also an entity called ‘innovation’. In order to detect abnormal operations within the network, this innovation is analysed with the binary sequential probability ratio test of Wald. Moreover, by crossing available information on several nodes of the network, a diagnosis of the detected anomalies is carried out. This method provided encouraging results during the analysis of several rains, on the sewer network of Seine-Saint-Denis County, France.  相似文献   


14.
The groundwater divide is a key feature of river basins and significantly influenced by subsurface hydrological processes. For an unconfined aquifer between two parallel rivers or ditches, it has long been defined as the top of the water table based on the Dupuit–Forchheimer approximation. However, the exact groundwater divide is subject to the interface between two local flow systems transporting groundwater to rivers from the infiltration recharge. This study contributes a new analytical model for two-dimensional groundwater flow between rivers of different water levels. The flownet is delineated in the model to identify groundwater flow systems and the exact groundwater divide. Formulas with two dimensionless parameters are derived to determine the distributed hydraulic head, the top of the water table and the groundwater divide. The locations of the groundwater divide and the top of the water table are not the same. The distance between them in horizontal can reach up to 8.9% of the distance between rivers. Numerical verifications indicate that simplifications in the analytical model do not significantly cause misestimates in the location of the groundwater divide. In contrast, the Dupuit–Forchheimer approximation yields an incorrect water table shape. The new analytical model is applied to investigate groundwater divides in the Loess Plateau, China, with a Monte Carlo simulation process taking into account the uncertainties in the parameters.  相似文献   

15.
Hydrological scientists develop perceptual models of the catchments they study, using field measurements and observations to build an understanding of the dominant processes controlling the hydrological response. However, conceptual and numerical models used to simulate catchment behaviour often fail to take advantage of this knowledge. It is common instead to use a pre‐defined model structure which can only be fitted to the catchment via parameter calibration. In this article, we suggest an alternative approach where different sources of field data are used to build a synthesis of dominant hydrological processes and hence provide recommendations for representing those processes in a time‐stepping simulation model. Using analysis of precipitation, flow and soil moisture data, recommendations are made for a comprehensive set of modelling decisions, including Evapotranspiration (ET) parameterization, vertical drainage threshold and behaviour, depth and water holding capacity of the active soil zone, unsaturated and saturated zone model architecture and deep groundwater flow behaviour. The second article in this two‐part series implements those recommendations and tests the capability of different model sub‐components to represent the observed hydrological processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin‐up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin‐up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin‐up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Long‐term heating of shallow urban aquifers is observed worldwide. Our measurements in the city of Cologne, Germany revealed that the groundwater temperatures found in the city centre are more than 5 K higher than the undisturbed background. To explore the role of groundwater flow for the development of subsurface urban heat islands, a numerical flow and heat transport model is set up, which describes the hydraulic conditions of Cologne and simulates the transient evolution of thermal anomalies in the urban ground. A main focus is on the influence of horizontal groundwater flow, groundwater recharge and trends in local ground warming. To examine heat transport in groundwater, a scenario consisting of a local hot spot with a length of 1 km of long‐term ground heating was set up in the centre of the city. Groundwater temperature‐depth profiles at upstream, central and downstream locations of this hot spot are inspected. The simulation results indicate that the main thermal transport mechanisms are long‐term vertical conductive heat input, horizontal advection and transverse dispersion. Groundwater recharge rates in the city are low (<100 mm a?1) and thus do not significantly contribute to heat transport into the urban aquifer. With groundwater flow, local vertical temperature profiles become very complex and are hard to interpret, if local flow conditions and heat sources are not thoroughly known. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Standard methodologies for sampling the physicochemical conditions of groundwater recommend purging a bore for three bore volumes to avoid sampling the stagnant water within a bore and instead gain samples representative of the aquifer. However, there are currently no methodological standards addressing the amount of purging required to gain representative biological samples to assess groundwater bacterial and viral abundances. The objective of this study was to examine how bacterial and viral abundances change during the purging of bore volumes. Six bores infiltrating into unconfined aquifers were pumped for five or six bore volumes each and bacteria and virus‐like particles (VLPs) were enumerated from each bore volume using flow cytometry. In examination of the individual bores trends in bacterial abundances were observed to increase, decrease, or remain constant with each purged bore volume. Furthermore, triplicates taken at each bore volume indicated substantial variations in VLP and bacterial abundances that are often larger than the differences between bore volumes. This indicates a high level of small scale heterogeneity in microbial community abundance in groundwater samples, and we suggest that this may be an intrinsic feature of bore biology. The heterogeneity observed may be driven by bottom up processes (variability in the distribution of organic and inorganic nutrients), top‐down processes (grazing and viral lysis), physical heterogeneities in the bore, or technical artifacts associated with the purging process. We suggest that a more detailed understanding of the ecology underpinning this variability is required to adequately describe the microbiological characteristics of groundwater ecosystems.  相似文献   

19.
A crude‐oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual‐pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved‐oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil‐phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.  相似文献   

20.
The objectives of this study are (1) to understand the subsurface hydrology in the Aurku area, Chiayi County, southern Taiwan, and (2) to determine the interaction between the manmade lake and groundwater level through the recharge produced by infiltration by on‐site investigation and laboratory sand tank simulation. The manmade lake was selected as the field site for groundwater recharge effect so as to assess the role of infiltration from the aquaculture ponds in this area. These results can be used as reference for future application of constructing a series of manmade lakes. The field experiment was performed to measure the infiltration rate of the manmade lake by using the water balance method and double‐ring infiltration test. The results demonstrated that the manmade lake had helped the recharge of the groundwater. Raising or maintaining a higher water level of the manmade lake can promote higher infiltration. When the groundwater level is equal to or higher than the bottom of the manmade lake, infiltration will slow or cease. The field experiment and laboratory sand tank simulation demonstrated that the infiltration rate increased with the higher storage depth of the manmade lake. The laboratory simulation also indicated that while the groundwater level was lower than the bottom of manmade lake (i.e. the reference level) and the initial water depth (3 cm) was equal to or greater than 50% of the full water storage depth, the infiltration depth increased with time. However, the infiltration depth would be very small or nearly zero when the groundwater level was higher than the bottom of the manmade lake. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号