首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wind River Range (WRR) of Wyoming has the largest concentration of alpine glaciers in the American Rockies and contributes to several major river systems in the western United States. Declines in the areal extent and volume of these glaciers are well documented, and eventual loss of alpine glaciers will reduce the amount of water available for agricultural and domestic use. The contribution of glacial melt to streamflow remains largely unquantified in Wyoming. We used isotope measurements and Bayesian modeling to estimate the fractional contribution of glacier meltwater to Dinwoody Creek (DC) in the WRR on bi‐weekly and seasonal (spring, summer, and fall) time scales over 2 years. In 2007 and 2008, we made temporally intensive measurements of the stable isotope composition of water from the DC watershed. Samples of the primary sources of streamflow (snowmelt, glacier melt, rain, and baseflow) were collected during field campaigns, and automated collection of stream samples occurred over the melt season. Isotope data (D and 18O) were analyzed within a hierarchical Bayesian framework that incorporated temporal and spatial correlations. Glacial melt contributed a significant proportion (~53–59%) to streamflow in a low‐flow year (2007) or when streamflow was low during a high‐flow year (2008). In 2008, a large and persistent snowpack contributed significantly (~0·42–51%) to streamflow in mid‐summer. The large contribution of glacial melt to streamflow suggests that the loss of glaciers may impact riparian ecosystems and human water supplies in the late summer and in years with low snowpack. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Cold‐based polar glacier watersheds contain well‐defined supraglacial, ice‐marginal, and proglacial elements that differ in their degree of hydrologic connectivity, sources of water (e.g., snow, ice, and/or sediment pore water), meltwater residence times, allochthonous and autochthonous nutrient, and sediment loads. We investigated 11 distinct hydrological units along the supraglacial, ice marginal, and proglacial flow paths that drain Joyce Glacier in the McMurdo Dry Valleys of Antarctica. We found that these units play unique and important roles as sources and/or sinks for dissolved inorganic nitrogen and dissolved inorganic phosphorus and for specific fractions of dissolved organic matter (DOM) as waters are routed from the glacier into nutrient‐poor downstream ecosystems. Changes in nutrient export from the glacial system as a whole were observed as the routing and residence times of meltwater changed throughout the melt season. The concentrations of major ions in the proglacial stream were inversely proportional to discharge, such that there was a relatively constant “trickle” of these solutes into downstream ecosystems. In contrast, NO3? concentrations generally increased with discharge, resulting in delivery of episodic pulses of dissolved inorganic nitrogen‐rich water (“treats”) into those same ecosystems during high discharge events. DOM concentrations or fluorescence did not correlate with discharge rate, but high variability in DOM concentrations or fluorescence suggests that DOM may be exported downstream as episodic treats, but with spatial and/or temporal patterns that remain poorly understood. The strong, nutrient‐specific responses to changes in hydrology suggest that polar glacier drainage systems may export meltwater with nutrient compositions that vary within and between melt seasons and watersheds. Because nutrient dynamics identified in this study differ between glacier watersheds with broadly similar hydrology, climate, and geology, we emphasize the need to develop conceptual models of nutrient export that thoroughly integrate the biogeochemical and hydrological processes that control the sources, fate, and export of nutrients from each system.  相似文献   

3.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   

4.
Abstract

Discharge measurements, precipitation observations and hydrochemical samples from catchments of the Callejon de Huaylas watershed draining the Cordillera Blanca to the Rio Santa, Peru, facilitate estimating the glacier meltwater contribution to streamflow over different spatial scales using water balance and end-member mixing computations. A monthly water balance of the Yanamarey Glacier catchment shows elevated annual discharge over December 2001–July 2004 compared to 1998–1999, with net glacier mass loss in all months. Glacial melt now accounts for an estimated 58% of annual mean discharge, 23% greater than 1998–1999. At Lake Querococha, below Yanamarey (3.4% glacierized), a hydrochemical end-member mixing model estimates that 50% of the streamflow is derived from the glacier catchment. Average concentrations from the Rio Santa leaving the Callejon de Huaylas (8% glacierized) are modelled as a mixture with 66% deriving from glacierized tributaries of the Cordillera Blanca as opposed to the non-glacierized Cordillera Negra end member.  相似文献   

5.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Cold‐based glaciers exist in low temperature and low humidity environments in which shortwave radiation is the largest source of energy to the glacier surface and the energy budget is very sensitive to the surface albedo. Consequently, the presence of relatively low volumes of debris on glacier surfaces has a significant impact on the timing, magnitude and rate of ablation at the surface. The aim of this study is to understand how the presence of sediment on the glacier surface at the start of the melt season can affect meltwater generation and delivery on a cold‐based glacier. A combination of field measurements, energy balance modelling and chemical mixing modelling were used on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica, between October 2005 and January 2006 to address this aim. In this system, sediment was transported onto the glacier surface during the winter months (March–October) by foehn winds, which reduced surface albedo at the start of the summer melt season. The areas of the glacier on which sediment accumulated began to melt earlier than other parts of the glacier and experienced a longer melt season. Over the study period, the total ablation on the dirty surfaces was nine times greater than for clean ice. Ablation on the dirty surfaces is dominated by melting, whereas sublimation dominates the clean ice. As the sediment was unevenly distributed over the glacier surface, the variation in melt amount and timing drove the development of a cryoconite hole system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The processes by which climate change affects streamflow in alpine river basins are not entirely understood. This study evaluated the impacts of temperature and precipitation changes on runoff and streamflow using glacier‐enhanced Soil and Water Assessment Tool model. The study used observed and detrended historical meteorological data for recent decades (1961–2005) to analyse individual and combined effects of temperature and precipitation changes on snow and glacier melts and discharges in the Sary‐Djaz‐Kumaric River Basin (SRB), Tianshan Mountains. The results showed a 1.3% increase in annual snowmelt in the basin, mainly because of an increase in precipitation. Snowmelt in the basin varied seasonally, increasing from April through May because of increasing precipitation and decreasing from July through September because of rising temperature. Glacier melt increased by 5.4%, 5.0% of which was due to rising temperature and only 0.4% due to increasing precipitation. Annual streamflow increased by 4.4%, of which temperature and precipitation increases accounted for 2.5% and 1.9%, respectively. The impacts of temperature and precipitation changes on streamflow were especially significant after 1980 and even more so in September. Glacier melt, due to temperature rise, was the dominant driver of increasing streamflow in the glacier‐dominated SRB, Tianshan Mountains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the development and testing of a distributed, physically based model of glacier hydrology. The model is used to investigate the behaviour of the hydrological system of Haut Glacier d'Arolla, Valais, Switzerland. The model has an hourly time-step and three main components: a surface energy balance submodel, a surface flow routing submodel and a subglacial hydrology submodel. The energy balance submodel is used to calculate meltwater production over the entire glacier surface. The surface routing submodel routes meltwater over the glacier surface from where it is produced to where it either enters the subglacial hydrological system via moulins or runs off the glacier surface. The subglacial hydrology submodel calculates water flow in a network of conduits, which can evolve over the course of a melt season simulation in response to changing meltwater inputs. The main model inputs are a digital elevation model of the glacier surface and its surrounding topography, start-of-season snow depth distribution data and meteorological data. Model performance is evaluated by comparing predictions with field measurements of proglacial stream discharge, subglacial water pressure (measured in a borehole drilled to the glacier bed) and water velocities inferred from dye tracer tests. The model performs best in comparison with the measured proglacial stream discharges, but some of the substantial features of the other two records are also reproduced. In particular, the model results show the high amplitude water pressure cycles observed in the borehole in the mid-melt season and the complex velocity/discharge hysteresis cycles observed in dye tracer tests. The results show that to model outflow hydrographs from glacierized catchments effectively, it is necessary to simulate spatial and temporal variations in surface melt rates, the delaying effect of the surface snowpack and the configuration of the subglacial drainage system itself. The model's ability to predict detailed spatial and temporal patterns of subglacial water pressures and velocities should make it a valuable tool for aiding the understanding of glacier dynamics and hydrochemistry. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The retreat of mountain glaciers and ice caps has dominated the rise in global sea level and is likely to remain an import component of eustatic sea‐level rise in the 21st century. Mountain glaciers are critical in supplying freshwater to populations inhabiting the valleys downstream who heavily rely on glacier runoff, such as arid and semi‐arid regions of western China. Owing to recent climate warming and the consequent rapid retreat of many glaciers, it is essential to evaluate the long‐term change in glacier melt water production, especially when considering the glacier area change. This paper describes the structure, principles and parameters of a modified monthly degree‐day model considering glacier area variation. Water balances in different elevation bands are calculated with full consideration of the monthly precipitation gradient and air temperature lapse rate. The degree‐day factors for ice and snow are tuned by comparing simulated variables to observation data for the same period, such as mass balance, equilibrium line altitude and glacier runoff depth. The glacier area–volume scaling factor is calibrated with the observed glacier area change monitored by remote sensing data of seven sub‐basins of the Tarim interior basin. Based on meteorological data, the glacier area, mass balance and runoff are estimated. The model can be used to evaluate the long‐term changes of melt water in all glacierized basins of western China, especially for those with limited observation data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
To improve our understanding of the interactions between hydrology and dynamics in mostly cold glaciers (in which water flow is limited by thermal regime), we analyse short‐term (every two days) variations in glacier flow in the ablation zone of polythermal John Evans Glacier, High Arctic Canada. We monitor the spatial and temporal propagation of high‐velocity events, and examine their impacts upon supraglacial drainage processes and evolving subglacial drainage system structure. Each year, in response to the rapid establishment of supraglacial–subglacial drainage connections in the mid‐ablation zone, a ‘spring event’ of high horizontal surface velocities and high residual vertical motion propagates downglacier over two to four days from the mid‐ablation zone to the terminus. Subsequently, horizontal velocities fall relative to the spring event but remain higher than over winter, reflecting channelization of subglacial drainage but continued supraglacial meltwater forcing. Further transient high‐velocity events occur later in each melt season in response to melt‐induced rising supraglacial meltwater inputs to the glacier bed, but the dynamic response of the glacier contrasts with that recorded during the spring event, with the degree of spatial propagation a function of the degree to which the subglacial drainage system has become channelized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

To assess the predictive significance of meteorological parameters for forecasting discharge from the Dokriani Glacier basin in the Himalayan region, discharge autocorrelation and correlations between discharge and meteorological factors were investigated on a monthly and a seasonal basis. Changes in correlations between discharge and meteorological variables, lagged by 0–3 days, were determined. Discharge autocorrelation was found to be very high for each individual summer month and for the melt season as a whole. This suggests that a substantial meltwater storage in the glacier, which results in a delayed response of runoff, and therefore discharge, from the highly glacierized basins is very much dependent on the previous day's discharge. A comparison of correlations between discharge and temperature, and discharge and precipitation shows that temperature has a better correlation with discharge during June and September, while precipitation has good correlation with discharge in July and August. Variations in the physical features of the glacier, weather conditions, and precipitation and its distribution with time over the basin account for changes in correlations. To forecast the runoff from the Dokriani Glacier basin, multiple linear regression equations were developed separately for each month and for the whole melt season. A better forecast was obtained using the seasonal regression equation. A comparison of correlations for the Dokriani Glacier with those for the Z'mutt Glacier basin, Switzerland, illustrates that, for both basins, the previous day's discharge (Qi-1) shows maximum autocorrelation throughout the melt period. Whereas a good correlation between discharge and temperature was observed for the Z'mutt Glacier basin for the whole melt period, for the Dokriani Glacier basin it was strong at the beginning and end of the ablation season. Runoff delaying behaviour in the Dokriani Glacier basin is found more prominent than in the Z'mutt Glacier basin early in the melt season. Water storage appears to be less significant in the Dokriani Glacier than in the Z'mutt Glacier towards the end of the ablation season. The strength of correlation between discharge and precipitation is higher for the Dokriani Glacier basin than for the Z'mutt Glacier basin. This is due to higher rainfall in the Dokriani Glacier basin. In general, for both glacier basins, maximum correlation is found between discharge and precipitation on the same day.  相似文献   

14.
Water temperature dynamics in High Arctic river basins   总被引:2,自引:0,他引:2  
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high‐resolution water column thermal regimes for glacier‐fed and non‐glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier‐fed rivers (0.3–3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7–2.3 °C km–1). Non‐glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9–5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p < 0.01) with incoming short‐wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin‐specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high‐latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high‐latitude river systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Alpine glaciers and perennial snow fields are important hydrologic elements in many mountain environments providing runoff during the late summer and during periods of drought. Because relatively long records of glacier mass–balance data are absent from many glacierized catchments, it remains unclear to what extent shrinking perennial snow and glaciers have affected runoff trends from these watersheds. Here, we employ a hydrograph separation technique that uses a double mass curve in an attempt to isolate changes in runoff due to glacier retreat and disappearance of perennial snow. The method is tested using hydrometric data from 20 glacierized and 16 nonglacierized catchments in the Columbia Basin of Canada. The resulting estimates on cryosphere storage contribution to streamflow were well correlated to other regional estimates on the basis of measurements as well as empirical and mechanistic models. Annual cryosphere runoff changed from +19 to ?55% during the period 1975–2012, with an average decline of 26%. For August runoff, these changes ranged from +17 to ?66%, with an average decrease of 24%. Reduction of cryosphere contributions to annual and late summer flows is expected to continue in the coming decades as glaciers and the perennial snow patches shrink. Our method to isolate changes in late summer cryospheric storage contributions can be used as a first order estimate on changes in glacier contributions to flow and may help researchers and water managers target watersheds for further analysis.  相似文献   

16.
Himalayan basins have considerable snow‐ and glacier‐covered areas, which are an important source of water, particularly during summer season. In the Himalayan region, in general, the glacier melt season is considered to be from May to October. Changes in hydrological characteristics of the runoff over the melt season can be understood by studying the variation in time to peak and time lag between melt generation and its emergence as runoff. In the present study, the runoff‐delaying characteristics of Gangotri Glacier, one of the largest glaciers in the Indian Himalayas, have been studied. For this purpose, hourly discharge and temperature data were collected near the snout of the glacier (4000 m) for three ablation seasons (2004–2006). The diurnal variations in discharge and temperature provided useful information on water storage and runoff characteristics of the glacier. In the early stages of the ablation period, poor drainage network and stronger storage characteristics of the glaciers due to the presence of seasonal snow cover resulted in a much delayed response of melt water, providing a higher time lag and time to peak as compared to the peak melt season. A comparison of runoff‐delaying parameters with the discharge ratio clearly indicated that changes in time lag and time to peak are inversely correlated with variations in discharge. Impact of such meltwater storage and delaying characteristics of glaciers on hydropower projects being planned/developed on glacier‐fed streams in India has been discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Sediment transport during flood events often reveals hysteretic patterns because flow discharge can peak before (counterclockwise hysteresis) or after (clockwise hysteresis) the peak of bedload. Hysteresis in sediment transport has been used in the literature to infer the degree of sediment availability. Counterclockwise and clockwise hysteresis have been in fact interpreted as limited and unlimited sediment supply conditions, respectively. Hysteresis has been mainly explored for the case of suspended sediment transport, but it was rarely reported for bedload transport in mountain streams. This work focuses on the temporal variability of bedload transport in an alpine catchment (Saldur basin, 18.6 km2, Italian Alps) where bedload transport was monitored by means of an acoustic pipe sensor which detects the acoustic vibrations induced by particles hitting a 0.5m‐long steel pipe. Runoff dynamics are dominated by snowmelt in late spring/early summer, mostly by glacier melt in late summer/early autumn, and by a combination of the snow and glacier melt in mid‐summer. The results indicate that hysteretic patterns during daily discharge fluctuations are predominantly clockwise during the snowmelt period, likely due to the ready availability of unpacked sediments within the channel or through bank erosion in the lower part of the basin. On the contrary, counterclockwise hysteresis tend to be more frequent during late glacier melting period, possibly due to the time lag needed for sediment provided by the glacial and peri‐glacial area to be transported to the monitoring section. However, intense rainfall events occurring during the glacier melt period generated predominantly clockwise hysteresis, thus indicating the activation of different sediment sources. These results indicate that runoff generation processes play a crucial role on sediment supply and temporal availability in mountain streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Dye tracing techniques were used to investigate the glacier-wide pattern of change in the englacial/subglacial drainage system of Haut Glacier d'Arolla during the ablation seasons of 1990 and 1991. Analysis of breakthrough curve characteristics indicate that over the course of a melt season, a system of major channels developed by headward growth at the expense of a hydraulically inefficient distributed system. By the end of the melt season, this channel system extended at least 3·3 km from the snout of the 4 km long glacier and drained the bulk of supraglacially derived meltwater passing through the glacier. The upper limit of the channel system closely followed the retreating snowline up-glacier. Rates of headward channel growth reached c. 65 m d−1, although these rates decreased in the upper 1 km of the glacier where snowline retreat exposed a patchy firn aquifer. It appears that the removal of snow (with its high albedo and significant water storage capacity) from the glacier surface resulted in a dramatic increase in the volume of runoff into moulins, and in the peakedness of daily runoff cycles. This induced transient high water pressures within the distributed drainage system, which caused it to evolve rapidly into a channelised system. It is therefore likely that, at a local scale, channel growth occurred down-glacier from moulins, and that the overall up-glacier-directed pattern of channel formation was caused by the retreating snowline exposing new moulins and crevasses to inputs of ice-derived meltwater. Damping of diurnal melt inputs by storage in the firm aquifer accounts for the slowing of channel growth in the upper glacier. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Potential changes in glacier area, mass balance and runoff in the Yarkant River Basin (YRB) and Beida River Basin (BRB) are projected for the period from 2011 to 2050 employing the modified monthly degree‐day model forced by climate change projection. Future monthly air temperature and precipitation were derived from the simple average of 17, 16 and 17 General Circulation Model (GCM) projections following the A1B, A2 and B1 scenarios, respectively. These data were downscaled to each station employing the Delta method, which computes differences between current and future GCM simulations and adds these changes to observed time series. Model parameters calibrated with observations or results published in the literature between 1961 and 2006 were kept unchanged. Annual glacier runoff in YRB is projected to increase until 2050, and the total runoff over glacier area in 1970 is projected to increase by about 13%–35% during 2011–2050 relative to the average during 1961–2006. Annual glacier runoff and the total runoff over glacier area in 1970 in BRB is projected to increase initially and then to reach a tipping point during 2011–2030. There are prominent increases in summer, but only small increase in May and October of glacier runoff in YRB, and significant increases during late spring and early summer and significant decreases in July and late summer of glacier runoff in BRB. This study highlights the great differences among basins in their response to future climate warming. The specific runoff from areas exposed after glacier retreat relative to 1970 is projected to general increasing, which must be considered when evaluating the potential change of glacier runoff. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号