首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《国际泥沙研究》2020,35(1):97-104
The flood season is the main period of flow,sediment transport,and sedimentation in the lower Yellow River(LYR).Within the flood season,most of the flow,sediment transport,and sedimentation occurs during flood events.Because of the importance of floods in forming riverbeds in the LYR,the regularity of sediment transport and sedimentation during floods in the LYR was studied.Measured daily discharge and sediment transport rate data for the LYR from 1960 to 2006 were used.A total of 299 floods were selected;these floods had a complete evolution of the flood process from the Xiaolangdi to the Lijin hydrological stations.For five hydrological stations(Xiaolangdi,Huayuankou,Gaocun,Aishan,and Lijin),a correlation was first established for floods of different magnitudes between the average sediment transport rate at a given station and the average sediment concentration at the closest upstream station.The results showed that the sediment transport rate at the downstream station was strongly correlated with the inflow(upstream station) sediment concentration during a flood event.A relation then was established between sedimentation in the LYR and the average sediment concentration at the Xiaolangdi station during a flood event.From this relation,the critical sediment concentrations were obtained for absolute erosion,sedimentation equilibrium,and absolute deposition during floods of different magnitudes in the LYR.The results of the current study contri b ute to a better understanding of the mechanisms of sediment transport and the regularity of sedimentation in the LYR during floods,and provide technical support to guide the joint operation of reservoirs and the regulation of the LYR.  相似文献   

2.
I.INTRODUCTIONTwo-dimensionalnumericalmodelisaPOwerfoltoolforengineersandriVermanagerstopredictfloodhydxaulics,identifyareasofinundation,anddesignoptionsforfloodcontrollingstructures.SomespecialproblemswithheavilysedimentladenflowriVershouldbecarefullyconsideredforthenumericalmodeldesigning;1.theplaneformofariVerisusuallybraidedanditsmainchannelshiftsoften.Themainchannelandbarreplaceeachotherseveraltimesinonefloodevent.Atagivenlocationthewaterdepthmaychangefromover10meterstoseveralcenhm…  相似文献   

3.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Understanding sediment sorting and bedding dynamics has high value to unravelling the mechanisms underlying geomorphological, geological, ecological and environmental imprints of tidal wetlands and hence to predicting their future changes. Using the Nanhui tidal flat on the Changjiang (Yangtze) Delta, China, as a reference site, this study establishes a schematized morphodynamic model coupling flow, sediment dynamics and bed level change to explore the processes that govern sediment sorting and bedding phenomena. Model results indicate an overall agreement with field data in terms of tidal current velocities, suspended sediment concentrations (SSCs), deposition thicknesses and sedimentary structures. Depending on the variation of tidal current strength, sand-dominated layers (SDLs) and mud-dominated layers (MDLs) tend to form during spring and neap tides, respectively. Thinner tidal couplets are developed during daily scale flood–ebb variations. A larger tidal level variation during a spring–neap tidal cycle, associated with a stronger tidal current variation, favours the formation of SDLs and tidal couplets. A larger boundary sediment supply generally promotes the formation of tidal bedding, though the bedding detail is partially dependent on the SSC composition of different sediment types. Sediment properties, including for example grain size and settling velocity, are also found to influence sediment sorting and bedding characteristics. In particular, finer and coarser sediment respond differently to spring and neap tides. During neap tides, relatively small flow velocities favour the deposition of finer sediment, with limited coarser sediment being transported to the upper tidal flat because of the larger settling velocity. During spring tides, larger flow velocities transport more coarser sediment to the upper tidal flat, accounting for distinct lamination formation. Model results are qualitatively consistent with field observations, but the role of waves, biological processes and alongshore currents needs to be included in further studies to establish a more complete understanding.  相似文献   

5.
There is an identified need for fully representing groundwater–surface water transition zone (i.e., the sediment zone that connects groundwater and surface water) processes in modeling fate and transport of contaminants to assist with management of contaminated sediments. Most existing groundwater and surface water fate and transport models are not dynamically linked and do not consider transition zone processes such as bioturbation and deposition and erosion of sediments. An interface module is developed herein to holistically simulate the fate and transport by coupling two commonly used models, Environmental Fluid Dynamics Code (EFDC) and SEAWAT, to simulate surface water and groundwater hydrodynamics, while providing an enhanced representation of the processes in the transition zone. Transition zone and surface water contaminant processes were represented through an enhanced version of the EFDC model, AQFATE. AQFATE also includes SEDZLJ, a state‐of‐the‐science surface water sediment transport model. The modeling framework was tested on a published test problem and applied to evaluate field‐scale two‐ and three‐dimensional contaminant transport. The model accurately simulated concentrations of salinity from a published test case. For the field‐scale applications, the model showed excellent mass balance closure for the transition zone and provided accurate simulations of all transition zone processes represented in the modeling framework. The model predictions for the two‐dimensional field case were consistent with site‐specific observations of contaminant migration. This modeling framework represents advancement in the simulation of transition zone processes and can help inform risk assessment at sites where contaminant sources from upland areas have the potential to impact sediments and surface water.  相似文献   

6.
A sediment mass balance constructed for a 16‐km reach of the Snake River downstream from Jackson Lake Dam (JLD) indicates that river regulation has reduced the magnitude of sediment mass balance deficit that would naturally exist in the absence of the dam. The sediment budget was constructed from calibrated bed load transport relations, which were used to model sediment flux into and through the study reach. Calibration of the transport relations was based on bed load transport data collected over a wide range of flows on the Snake River and its two major tributaries within the study area in 2006 and 2007. Comparison of actual flows with unregulated flows for the period since 1957 shows that operations of JLD have reduced annual peak flows and increased late summer flows. Painted tracer stones placed at five locations during the 2005 spring flood demonstrate that despite the reduction in flood magnitudes, common floods are capable of mobilizing the bed material. The sediment mass balance demonstrates that more sediment exits the study reach than is being supplied by tributaries. However, the volume of sediment exported using estimated unregulated hydrology indicates that the magnitude of the deficit would be greater in the absence of JLD. Calculations suggest that the Snake River was not in equilibrium before construction of JLD, but was naturally in sediment deficit. The conclusion that impoundment lessened a natural sediment deficit condition rather than causing sediment surplus could not have been predicted in the absence of sediment transport data, and highlights the value of transport data and calculation of sediment mass balance in informing dam operations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
《Continental Shelf Research》2007,27(3-4):322-337
A simple model for wave-supported gravity flows is applied to sediment deposition off the mouth of the Po River at time scales ranging from a single major flood to steady-state clinoform progradation. Wave-supported gravity flows are a newly appreciated class of turbidity currents, which rely on the velocity shear produced by waves near the seabed to keep sediment in suspension. The modeling approach used here, which limits the gravity flow's sediment load via a critical Richardson number, is applicable to fine sediment transport near river mouths wherever wave energy is available to move abundant sediment offshore during floods. Results suggest this phenomenon can account for the majority of the fall 2000 flood deposit mapped by EuroSTRATAFORM investigators in the vicinity of the Po River prodelta and also for the rate of prodelta progradation observed off the dominant Pila outlet of the Po over a century time-scale. Model results predict that convergence of down-slope sediment transport by wave-supported gravity flows increases with bed slope but decreases with slope gradient, such that greatest deposition occurs near where steep slopes first stop increasing with distance offshore. Thus on profiles which reach maximum steepness near shore, like those off Tolle–Gnocca–Goro mouths today or off the Pila mouth 150 y ago, gravity-driven deposition occurs in shallower water. Over time, if deposition overwhelms subsidence, the prodelta becomes less steep near shore and steeper offshore, and the locus of deposition moves progressively into deeper water. If the prodelta is prograding across a relatively flat shelf, the shape of the prodelta eventually reaches a stable form which progrades seaward as a unit. This has occurred off the Pila; but subsidence has likely overwhelmed deposition off the Tolle–Gnocca–Goro, keeping steepest slopes and maximum deposition in shallower water.  相似文献   

8.
A simple one‐dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
There is growing concern that rapidly changing climate in high latitudes may generate significant geomorphological changes that could mobilise floodplain sediments and carbon; however detailed investigations into the bank erosion process regimes of high latitude rivers remain lacking. Here we employ a combination of thermal and RGB colour time-lapse photos in concert with water level, flow characteristics, bank sediment moisture and temperature, and topographical data to analyse river bank dynamics during the open-channel flow period (the period from the rise of the spring snowmelt flood until the autumn low flow period) for a subarctic river in northern Finland (Pulmanki River). We show how variations of bank sediment temperature and moisture affect bank erosion rates and locations, how bank collapses relate to fluvial processes, and elucidate the seasonal variations and interlinkages between the different driving processes. We find that areas with high levels of groundwater content and loose sand layers were the most prone areas for bank erosion. Groundwater seeping caused continuous erosion throughout the study period, whereas erosion by flowing river water occurred during the peak of snowmelt flood. However, erosion also occurred during the falling phase of the spring flood, mainly due to mass failures. The rising phase of the spring flood therefore did not affect the river bank as much as its peak or receding phases. This is explained because the bank is resistant to erosion due to the prevalence of still frozen and drier sediments at the beginning of the spring flood. Overall, most bank erosion and deposition occurrences were observed during the low flow period after the spring flood. This highlights that spring melt, while often delivering the highest discharges, may not be the main driver of bank erosion in sub-arctic meandering rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The objective of this case study was to calibrate and verify detailed transport model of sediment in a 4‐kilometre stretch of the middle Elbe floodplains in Germany. The hydraulic RMA‐2 model and the SED2d‐WES sediment transport model were used. These models were calibrated and validated by detailed measurement of the surface water elevations, the velocities at six profiles, and the suspended sediment concentration and deposition (by means of 10 sediment traps). The flow was modelled for three steady‐state discharges. The surface water elevations were calculated to an accuracy of less than 5 cm compared to measurements. The differences between the calculated and measured velocities were with one exception smaller than 0.2 m/s (measured range 0.1…?1.0 m/s). An average sediment input of 35 g/(m2 d) was calculated for the flood event studied. The highest calculated sedimentation rates of 700 g/(m2 d) (dry density 90 kg/m3) occurred in quiescent zones and abandoned channels. Twenty‐five percent of the deposited sediment settled in the quiescent zones (which only account for 13% of the area). The most sensitive parameters of the sediment transport model were the settling velocity and critical shear stress. The modelling techniques used allowed sediment deposition on the floodplains of the Elbe to be realistically depicted.  相似文献   

14.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

15.
《国际泥沙研究》2022,37(6):715-728
Rainfall-induced floods may trigger intense sediment transport on erodible catchments, especially on the Loess Plateau in China, which in turn modifies the floods. However, the role of sediment transport in modifying floods has to date remained poorly understood. Concurrently, traditional hydrodynamic models for rainfall-induced floods typically ignore sediment transport, which may lead to inaccurate results for highly erodible catchments. Here, a two-dimensional (2D) coupled shallow water hydro-sediment-morphodynamic (SHSM) model, based on the Finite Volume Method on unstructured meshes and parallel computing, is proposed and applied to simulate rainfall-induced floods in the Zhidan catchment on the Loess Plateau, Shaanxi Province, China. For six historical floods of return periods up to 2 years, the numerical results compare well with observations of discharge hydrographs at the catchment outlet. The computed runoff-sediment yield relation is quantitatively reasonable as compared with other catchments under similar geographical conditions. It is revealed that neglecting sediment transport leads to underestimation of peak discharge of the flood by 14%–45%, whilst its effect on the timing of the peak discharge varies for different flood events. For 18 design floods with return periods of 10–500 years, sediment transport may lead to higher peak discharge by around 9%–15%. The temporal pattern of concentrated rainfall in a short period may lead to a larger exponent value of the power function for the runoff-sediment yield relation. The current finding leads us to propose that incorporating sediment transport in rainfall-induced flood modeling is warranted. The SHSM model is applicable to flood and sediment modeling at the catchment scale in support of risk management and water and soil management.  相似文献   

16.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
More frequent extreme flood events are likely to occur in many areas in the twenty‐first century due to climate change. The impacts of these changes on sediment transport are examined at the event scale using a 1D morphodynamic model (SEDROUT4‐M) for three tributaries of the Saint‐Lawrence River (Québec, Canada) using daily discharge series generated with a hydrological model (HSAMI) from three global climate models (GCMs). For all tributaries, larger flood events occur in all future scenarios, leading to increases in bed‐material transport rates, number of transport events and number of days in the year where sediment transport occurs. The effective and half‐load discharges increase under all GCM simulations. Differences in flood timing within the tributaries, with a shift of peak annual discharge from the spring towards the winter, compared to the hydrograph of the Saint‐Lawrence River, generate higher sediment transport rates because of increased water surface slope and stream power. Previous research had shown that channel erosion is expected under all GCMs' discharge scenarios. This study shows that, despite lower bed elevations, flood risk is likely to increase as a result of higher flood magnitude, even with falling base level in the Saint‐Lawrence River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In August 2005 severe flood events occurred in the Alps. A sediment routing model for steep torrent channel networks called SETRAC has been applied to six well‐documented case study streams with substantial sediment transport in Austria and Switzerland. For these streams information on the sediment budget along the main channel is available. Flood hydrographs were reconstructed based on precipitation data and stream gauges in neighbouring catchments. Different scenarios are modelled and discussed regarding sediment availability and the effect of armouring and macro‐roughness on sediment transport calculations. The simulation results show the importance of considering increased flow resistance for small relative flow depth when modelling bedload transport during high‐intensity flood events in torrents and mountain rivers. Without any correction of increased flow resistance using a reduced energy slope, the predicted bedload volumes are about a factor of 10 higher on average than the observed values. Simulation results were also used for a back‐calculation of macro‐roughness effects from bedload transport data, and compared with an independent estimate of flow resistance partitioning based on flow resistance data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5‐year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near‐bed pore‐water temperature. The method facilitates the study of gravel transport by using near‐bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re‐deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5‐year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven‐year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along‐stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This study investigates sediment transport at a very low‐energy backbarrier beach in southern Portugal, from a spring‐to‐neap tide period, during fair‐weather conditions. Rates and directions of transport were determined based on the application of fluorescent tracer techniques. Wind and currents were collected locally, whereas the dominant small and short‐period wind waves were characterized using a morphodynamic modelling system coupling a circulation model, a spectral wave model, and a bottom evolution model, well validated over the study area. For the recorded conditions sediment transport was small and ebb oriented, with daily transport rates below 0.02 m3 day‐1. Tidal currents (mainly ebb velocities) were found to be the main causative forcing controlling sediment displacements. Transport rates were higher during spring tides, tending towards very small values at neap tides. Results herein reported points towards the distinction between tracer advection and tracer dispersion in this type of environment. Transport by advection was low as a consequence of the prevailing hydrodynamic conditions (Hs < 0.1 m, and max. current velocity of 0.5 m s‐1) and the tracer adjustment to the transport layer, whereas dispersion was relatively high (few metres per day). Tracer techniques allowed distinguishing the broad picture of transport, but revealed the need for refinement in this type of environments (bi‐directional forcing by ebb and flood cycles). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号