首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Lasafam Iturrizaga 《GeoJournal》1999,47(1-2):277-339
An abridged version of a geomorphological inventory and typology of Postglacial debris accumulations in High Asia is presented, with selected examples from the Hindu Kush, the Karakoram and the Himalayas. The debris accumulations were surveyed in the course of four research expeditions lasting a total of ten months in selected valley systems of High Asia (the eastern Hindu Kush, the northwestern Karakoram, the Nanga Parbat massif (Pakistan), the Ladakh and Zanskar ranges, the Nun Kun massif, the Kumaon and Garhwal Himalayas with the Kamet, Trisul and Nanda Devi massifs (India) and in the central Himalayas with the Kanjiroba, Annapurna, Manaslu and Makalu massifs (Nepal)). The study areas being widely scattered, a supraregional comparison of the debris accumulations proved possible. The debris accumulations are considered in centre-to-periphery sequences from the mountain interior to the mountain fringes, and in vertical sequences, i.e. altitudinal zones, taking into account their topographical relationship to adjoining elements of the landscape. Supraregional and climate-specific types of debris accumulation are distinguished and it is recognized that the debris accumulations of the Karakoram and the Himalayas resemble each other more closely with increasing elevation. The core of the study is the dominant role played by past glaciation in the formation of Postglacial debris accumulations in the high mountains of Asia. This glacial-history-oriented concept of debris accumulation stands in sharp contrast to previous opinions about the genesis of the debris accumulation landscape in the extreme high mountains of Asia. The study shows that at many places morainic deposits mask extensive portions of the valley sides up to several hundred metres above the valley floor. These moraines are the main debris sources and exert a strong influence on, or even suppress, the purely slope-related formation of debris accumulations. Resedimentation of morainic material in combination with additional talus delivery leads to numerous characteristic composite types of debris accumulations, which are here termed transitional glacial debris accumulations. Various stages in the transition from moraine to slope-related debris accumulations were observed, making it necessary to consider the evolutional element in the development of debris accumulations by taking into account both genetic series of debris accumulations and formations of debris accumulations. A significant proportion of debris accumulations are also due to collapse processes which result from pressure release at the valley sides after deglaciation and occur in the course of glacial trough valleys being transformed into more stable fluvial V-shaped valleys. The residual morainic landscape has left debris accumulations that are basically similar in study areas of different climate – i.e. in the Hindu Kush and the Karakoram on the one hand, and the Himalayas on the other. The age classification of the debris accumulations was based on the location of the slope-derived debris accumulations in relation to the corresponding stages of glaciation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Natural Hazards - The paper presents a historical long-distance communication system based on beacon fires in one of the most dynamic and rugged mountain ranges of the world, the Hindu...  相似文献   

5.
6.
7.
Members Ⅰ-Ⅳ of the Wumishan Formation of the Jixian System are exposed respectively in Mt. Cuihua and Mt. Hushan in the Ming Tombs, Beijing. Black banded cherts which are extensively developed in this formation contain an abundance ofmicrofossils that are well preserved and variable in form. A study of thin sections shows that the microfossils include 10 genera, 12 species, 3 of. species, 2 indeterminate species and 1 unnamed form, of which 1 genus and 7 species are newly erected. The present assemblage is morphologically comparable to those from the Wumishan Formation in the Western Hills of Beijing, Jixian County of Tianjin and Kuancheng of Hebei Province.  相似文献   

8.
According to differences of the protolith formations, the early Precambrian strata in the northern part ofthe North China platform may be divided into the stable stratigraphic region in the west and the mobilestratigraphic region in the east. Based on unconformities, either stratiragphic or tectonic, as well as significantmetamorphic thermal events, the two regions may be stratigraphically defined as follows: 1) the middleArchaean Fuping Supergroup composed of the Chenzhuang and Wanzi Groups (stable areas), and the middleArchaean Qianxi Group (mobile area), whose upper limits are all dated at 2800 Ma; and 2) the upper ArchaeanWutai Supergroup composed of the Longquanguan, Shizui and Taihuai Groups (stable areas), and the upperArchaean Zunhua, Dantazi and Zhuzhangzi Groups (mobile areas). whose upper limits are all dated at 2500Ma. A correlation of the above-mentioned units is also made. The lower Proterozoic Hutuo Group of the sta-ble region is adjusted to comprise the Gaofan, Doucun, Dongye and Guojiazhai Groups. The upper limit of theGaofan Group is placed at 2350 Ma, Dongye 1850 Ma and Guojiazhai (the lower limit of the Changcheng Sys-tem) 1700 Ma.  相似文献   

9.
1. IntroductionThe Tarim basin, one of the most developed and important areas of marine Cretaceous-Tertiary in China except for south Tibet, is very rich in oil and gas, such as Kekeya oilfield in southwestern Tarim and Kela2 gas field in northeastern Tarim. Because of the expansion, subduction of the oceanic crust of the Tethys and the collision between the India plate and the Eurasia plate during the Cretaceous-Tertiary, the Tethys transgressed into the Tarim basin from west to east fr…  相似文献   

10.
The Huanghuachang section near Yichang, southern China meets the requirements of Global Stratotype Section and Point (GSSP) for the base of the Middle Ordovician Series and the yet-to-be-named third stage of the Ordovician System (or lower stage of Middle Ordovician Series). The conodont succession at the section is complete across the Lower to Middle Ordovician series boundary and several excellent phylogenetic lineages of Baltoniodus, Trapezognathus, Periodon, and Microzarkodina are represented. The definition of the base of the Middle Ordovician is proposed to be the first appearance datum (FAD) of Baltoniodus? triangularis in the section. It is followed closely by the FAD of Microzarkodina flabellum, which is taken as a reasonable proxy for the boundary. This level approximates the boundary between the lower and upper intervals of the Azygograptus suecicus graptolite Biozone, and nearly coincides with the base of the Belonechitina henryi chitinozoan Biozone.The proposed GSSP for the base of the international Middle Ordovician Series is located in a roadside exposure at the base of Bed (SHod) 16, 10.57 m above the base of the Dawan Formation in the measured Huanghuachang section near Yichang City, southern China. The same faunal succession is also recorded from the Chenjiahe (formerly Daping) section, 5 km to the north of the Huanghuachang section. The proposed boundary horizon can be recognized and correlated globally with high precision in both relatively shallow-water carbonate facies as well as in deep-water graptolite facies.  相似文献   

11.
Reconstructions of the Cambrian–Silurian tectonic evolution of eastern Gondwanaland, when the Australian Tasmanides and Antarctic Ross Orogen developed, rely on correlation between structural elements in SE Australia and Northern Victoria Land (NVL), Antarctica. A variety of published models exist but none completely solve the tectonic puzzle that is the Delamerian–Lachlan transition in the Tasmanides. This paper summarizes the understanding of Cambrian (Delamerian) to Silurian (Lachlan) geological evolution of the eastern Tasmanides, taking into account new deep seismic data that clarifies the geological connection between Victoria and Tasmania — the ‘Selwyn Block’ model. It evaluates previous attempts at correlation between NVL, Tasmania and Victoria, and presents a new scenario that encompasses the most robust correlations. Tasmania together with the Selwyn Block is reinterpreted as an exotic Proterozoic microcontinental block – ‘VanDieland’ – that collided into the east Gondwanaland margin south of western Victoria, and north of NVL in the Late Cambrian, perhaps terminating the Delamerian Orogeny in SE Australia. Subsequent north-east ‘tectonic escape’ of VanDieland in the Early Ordovician explains the present-day outboard position of Tasmania with respect to the rest of the Delamerian orogen, the origin of the hiatus that separates the Delamerian and Lachlan orogenic cycles in Australia, and how western Lachlan oceanic crust developed as a ‘trapped plate-segment’. The model establishes a new structural template for subsequent Lachlan Orogen development and Mesozoic Australia–Antarctica separation.  相似文献   

12.
Integrative methods of chemostratigraphy and biostratigraphy were used in the study of microtektites and moderate nickel-iridium anomaly beds in the Devonian-Carboniferous boundary beds at Huangmao (Guangxi Autonomous Region) and Muhua (Guizhou Province) in southern China. Microtektites provide evidence for meteoritic impact event(s), whereas the minerals and the chemical composition of the Ni-Ir anomaly beds likely display a submarine hydrothermal origin. It is postulated that the intensification of the rifting-hydrothermal process, and the ensuing pollution, might have been responsible for the Devonian-Carboniferous biotic crisis. This process began in the late Famennian expansa zone, lasted to the Tournaisian duplicata zone, and produced the largest manganese ore deposits of China.  相似文献   

13.
The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on me  相似文献   

14.
15.
The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well developed fault system in the western segment of the East Kunlun Mountains and thrust propagation, normal slip and decoupling are the chief deformation events in this area. (2) Although the thrusting started in the Late Carboniferous and Late Triassic-Early Jurassic, strong activity took place in the Miocene-Quaternary when the Kumkol basin was strongly downwarped. (3) The tectonic pattern of coexistence of N-directed thrust propagation and S-directed normal slip in this area is consistent with the general tectonic pattern of the northern Qinghai-Tibet plateau and also very similar to that of the Himalayan region on the southern margin of the Qinghai-Tibet plateau, but their directions between the thrust propagation are opposite and all the strong thrust propagations occurred from the Mioc  相似文献   

16.
1INTRODUCTION THELATEPRECAMBRIANGRANITOIDSOFTHEARABONU BIANSHIELDINEGYPTWEREEXPOSEDBYEARLYTOMIDDLE TERTIARYUPLIFTANDENSUINGEROSIONDURINGTHEREDSEA RIFTINGEVENT(GREENBERG,1981).THEREAREANUMBER OFEFFECTIVEANDRELATIVELYSUCCESSFULSCHEMESFORTHE CLASSIFICATIONOF…  相似文献   

17.
《International Geology Review》2012,54(12):1504-1520
This study presents new data relating to the tectonic evolution of the Zhonggang ocean island, within the Mesozoic Banggongco–Nujiang suture zone of northern Tibet, and discusses the implications of these data for the evolution of this region. Thirteen basalt and ten gabbro samples were collected from a sampling transect through this area; these samples have light rare earth element (LREE)-enriched chondrite-normalized REE patterns, and are enriched in highly incompatible elements, yielding primitive-mantle-normalized trace-element variation patterns that are similar to ocean island basalts (OIB). A gabbro dike intruded into basalt of the Zhonggang ocean island and was overlain by basaltic conglomerate, suggesting that this dike was formed after the basalt, but before the basaltic conglomerate. The gabbro dike yields an LA–ICP–MS zircon U–Pb age of 116.2 ± 4.1 Ma, indicating the timing of formation of the Zhonggang ocean island, and suggesting in turn that the Banggongco–Nujiang Neo-Tethys Ocean remained open at this time. These data, combined with the geological history of the region, indicates that the Banggongco–Nujiang Neo-Tethys Ocean opened between the late Permian and the Early Triassic, expanded rapidly between Late Triassic and Middle Jurassic time, and finally closed between the late Early and early Late Cretaceous.  相似文献   

18.
Data on the distribution of radiolarians and planktonic and benthic foraminifers are obtained for the first time from the Alan-Kyr Section (Coniacian–Campanian), in the central regions of the Crimean Mountains. Radiolarian biostrata, previously established from Ak-Kaya Mountain (central regions of the Crimean Mountains) were traced: Alievium praegallowayi–Crucella plana (upper Coniacian–lower Santonian), Alievium gallowayi–Crucella espartoensis (upper Santonian without the topmost part), and Dictyocephalus (Dictyocryphalus) (?) legumen–Spongosaturninus parvulus (upper part of the upper Santonian). Radiolarians from the Santonian–Campanian boundary beds of the Crimean Mountains are studied for the first time, and Prunobrachium sp. ex gr. crassum–Diacanthocapsa acanthica Beds (uppermost Santonian–lower Campanian) are recognized. Bolivinoides strigillatus Beds (upper Santonian) and Stensioeina pommerana–Anomalinoides (?) insignis Beds (upper part of the upper Santonian–lower part of the lower Campanian) are recognized. Eouvigerina aspera denticulocarinata Beds (middle and upper parts of the lower Campanian) and Angulogavelinella gracilis Beds (upper part of the upper Campanian are recognized on the basis of benthic foraminifers. These beds correspond to the synchronous biostrata of the East European Platform and Mangyshlak. Marginotruncana coronata-Concavatotruncana concavata Beds (Coniacian–upper Santonian), Globotruncanita elevata Beds (terminal Santonian), and Globotruncana arca Beds (lower Campanian) are recognized on the basis of planktonic foraminifers. Radiolarian and planktonic and benthic foraminiferal data agree with one another. The position of the Santonian–Campanian boundary in the Alan-Kyr Section, which is located stratigraphically above the levels of the latest occurrence of Concavatotruncana concavata and representatives of the genus Marginotruncana, is refined, i.e., at the level of the first appearance of Globotruncana arca. A gap in the Middle Campanian–lower part of the upper Campanian is established on the basis of planktonic and benthic foraminifers. The Santonian–Campanian beds of the Alan-Kyr Section, on the basis of planktonic foraminifers and radiolarians, positively correlate with synchronous beds of the Crimean-Caucasian region, and beyond. Benthic foraminifers suggest a connection with the basins of the East European Platform.  相似文献   

19.
The paper presents original authors' data on the O, H, C, S, and Sr isotopic composition of water and sediments from the basins into which the Aral Sea split after its catastrophic shoaling: Chernyshev Bay (CB), the basin of the Great Aral in the north, Lake Tshchebas (LT), and Minor Sea (MS). The data indicate that the δ18О, δD, δ13C, and δ34S of the water correlate with the mineralization (S) of the basins (as of 2014): for CB, S = 135.6‰, δ18О = 4.8 ± 0.1‰, δD = 5 ± 2‰, δ13C (dissolved inorganic carbon, DIC) = 3.5 ± 0.1‰, δ34S = 14.5‰; for LT, S = 83.8‰, δ18О = 2.0 ± 0.1‰, δD =–13.5 ± 1.5‰, δ13C = 2.0 ± 0.1‰, δ34S = 14.2‰; and for MS, S = 9.2‰, δ18О =–2.0 ± 0.1‰, δD =–29 ± 1‰, δ13C =–0.5 ± 0.5‰, δ34S = 13.1‰. The oxygen and hydrogen isotopic composition of the groundwaters are similar to those in MS and principally different from the artesian waters fed by atmospheric precipitation. The mineralization, δ13С, and δ34S of the groundwaters broadly vary, reflecting interaction with the host rocks. The average δ13С values of the shell and detrital carbonates sampled at the modern dried off zones of the basins are similar: 0.8 ± 0.8‰ for CB, 0.8 ± 1.4‰ for LT, and –0.4 ± 0.3‰ for MS. The oxygen isotopic composition of the carbonates varies much more broadly, and the average values are as follows: 34.2 ± 0.2‰ for CB, 32.0 ± 2.2‰ for LT, and 28.2 ± 0.9‰ for MS. These values correlate with the δ18O of the water of the corresponding basins. The carbonate cement of the Late Eocene sandstone of the Chengan Formation, which makes up the wave-cut terrace at CB, has anomalously low δ13С up to –38.5‰, suggesting origin near a submarine methane seep. The δ34S of the mirabilite and gypsum (11.0 to 16.6‰) from the bottom sediments and young dried off zone also decrease from CB to MS in response to increasing content of sulfates brought by the Syr-Darya River (δ34S = 9.1 to 9.9‰) and weakening sulfate reduction. The 87Sr/86Sr ratio in the water and carbonates of the Aral basins do not differ, within the analytical error, and is 0.70914 ± 0.00003 on average. This value indicate that the dominant Sr source of the Aral Sea is Mesozoic–Cenozoic carbonate rocks. The Rb–Sr systems of the silicate component of the bottom silt (which is likely dominated by eolian sediments) of MS and LT plot on the Т = 160 ± 5 Ma, I0 = 0.7091 ± 0.0001, pseudochron. The Rb–Sr systems of CB are less ordered, and the silt is likely a mixture of eolian and alluvial sediments.  相似文献   

20.
The Chah-Bazargan gabbroic intrusions are located in the south of Sanandaj–Sirjan zone. Precise U–Pb zircon SHRIMP ages of the intrusions show magmatic ages of 170.5 ± 1.9 Ma. These intrusions consist primarily of gabbros, interspersed with lenticular bodies of anorthosite, troctolite, clinopyroxenite, and wehrlite. The lenticular bodies show gradational or sharp boundaries with the gabbros. In the gradational boundaries, gabbros are mineralogically transformed into anorthosites, wehrlites, and/or clinopyroxenites. On the other hand, where the boundaries are sharp, the mineral assemblages change abruptly. There is no obvious deformation in the intrusions. Hence, the changes in mineral compositions are interpreted as the result of crystallization processes, such as fractionation in the magma chamber. Rock types with sharp boundaries show abrupt chemical changes, but the changes exhibit the same patterns of increasing and decreasing elements, especially of rare earth elements, as the gradational boundaries. Therefore, it is possible that all parts of the intrusions were formed from the same parental magma. Parts showing signs of nonequilibrium crystallization, such as cumulate features and sub-solidification, underwent fracturing and were interspersed throughout the magma chamber by late injection pulses or mechanical movements under mush conditions. The geological and age data show that the intrusions were formed from an Al-, Sr-, Fe-enriched and K-, Nb-depleted tholeiitic magma. The magma resulted from the partial melting of a metasomatized spinel demonstrated by negative Nb, P, Hf, and Ti, and positive Ba, Sr, and U anomalies typical of subduction-related magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号