首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The southwestern part of south Shillong plateau (Meghalaya, N-E India), designated as Sylhet Limestone Group is sub-divided into three lithounits i.e., Lakadong, Umlatdoh and Prang formations in ascending order. The Prang Formation is the youngest lithostratigraphic unit of the Sylhet Limestone Group and has been dated as Middle to early Upper Eocene based on the benthic foraminifera studies. Thin section analysis of carbonate rocks from Prang Formation, exposed in the Bholaganj limestone quarry yielded a rich assemblage of calcareous algae. The coralline algal assemblage comprises both non-geniculate and geniculate forms. The green algae are represented by species of Halimeda belonging to the family Halimedaceae. Palaeoecological interpretation based on diversity, growth-form analysis and taphonomic aspects of the algal assemblage indicate that in all probabilities the deposition of Prang Formation occurred in shallow, warm, shelf environment of normal salinity within the transgressive phase.  相似文献   

2.
Miocene coral-bearing limestones, distributed in the western Makran Basin, are attributed to Aquitanian and Burdigalian. This investigation is focused on three Early Miocene coral-bearing limestone sections in western Makran. Remarkably, well-preserved scleractinian corals and other components could be very definitive to reconstruct paleoenvironmental conditions. Lithologically, there are some differences between the studied sections. Furthermore, zooxanthellate corals are diverse and abundant in all sections. Based on different components and richness of zooxanthellate corals, it seems that the studied carbonate corals are precipitated in a subtropical condition, between 19 and 20 °C in all sections. In light of the dominancy of corals, the presence of symbiont-bearing larger benthic foraminifera (LBF), lithological features, bioeroding features, and encrusting organisms, the oligotrophic to slightly mesotrophic conditions are considered for Tejek section and the mesotrophic condition had been prevailed in Kermestan and Irer sections. According to light intensity in water column and coral morphotypes, Tejek section is considered to precipitate under euphotic to slightly mesophotic condition, while Kermestan and Irer sections were deposited under mesophotic to euphotic light conditions. In transparent water, photic zones continue to deeper depths, while in less transparent water, these zones are limited to shallower parts. A defined depth in the photic zone may represent euphotic, mesophotic, or oligophotic zone. Based on the water transparency, a taxon in a defined photic zone can occur in various depths. On the basis of trophic-light intensity-depth chart, the estimated depth ranges are 12–85 m for Tejek section and 5–62 m for Kermestan and Irer sections. Water energy as another important factor in environmental condition is acquired from coral morphotypes. Accordingly, Tejek section is precipitated under moderate-high energy and Kermestan and Irer sections are deposited in low to moderate-high energy. The presence of encrusting coralline algae, corals, and other constituents is indicative of different substrates in the studied areas. Corals favorably develop in normal salinity waters. The existence of colonial corals and occurrence of benthic foraminifera with hyaline wall indicate normal seawater conditions.  相似文献   

3.
We carried out a comprehensive facies/microfacies, micropalaeontological and biostratigraphical analysis of several carbonate olistoliths incorporated within a widely developed Albian conglomeratic sequence from the Eastern Carpathians of Romania. The majority of the sampled olistoliths contain a rich assemblage of benthic foraminifera and calcareous green algae. All of the described microfossils represent common lowermost Cretaceous taxa not previously reported from these carbonate elements or from this region. Based on benthic foraminifera assemblages the age of the studied olistoliths is upper Berriasian–lower Valanginian, contrary to the general belief that they are Barremian–Aptian in age. The dominant microfacies types mainly reflect deposition in shallow-water environments and show similarities with synchronous platform carbonates of the central-western Neotethys Ocean. The micropalaeontological and sedimentological data support new interpretations concerning the source area of these carbonate elements and provide new information concerning the evolution of the lowermost Cretaceous carbonate platforms of the Carpathians.  相似文献   

4.
The present paper records nine species of coralline algae from the Prang Formation of middle-late Eocene age from the Jaintia Hills, Meghalaya. The algae are associated with the larger foraminifera including Nummulites, Alveolina and Discocyclina throughout the succession. The temporal distribution of algal species indicates that seven species are known from the Eocene. Of the remaining two, one ranges from the Palaeocene to Eocene and the other is Palaeocene in age. The coralline algae and larger foraminifers are differentiated into two associations, the lower one indicating inner-ramp environment of high energy and the upper one showing deposition in relatively calm waters of deeper ramp environment.  相似文献   

5.
Intertrappean beds exposed between upper and lower traps of the Government and Sunnamrayalu quarries of Rajahmundry were analyzed based on benthic and planktic foraminifera, ostracodes and algae observed in thin sections. Planktic foraminifera indicate deposition occurred in the early Danian Parvularugoglobigerina eugubina (P1a) zone shortly after deposition of the lower trap flows. The most diverse planktic assemblages were deposited in limestones of the middle intertrappean interval and indicate an upper P1a age, or subzone P1a(2), as marked by the co-occurrence of P. eugubina, Globoconusa daubjergensis, Parasubbotina pseudobulloides and Subbotina triloculinoides. Reworked late Maastrichtian planktic foraminifera are common in a limestone interval and suggest erosion of uplifted Cretaceous sediments. Benthic foraminiferal assemblages indicate deposition occurred predominantly in shallow inner shelf to brackish environments. Similarly, ostracodes indicate variable environments ranging from inner neritic to brackish with fresh water influx, as also indicated by the presence of fresh water algae. These data confirm an overall deepening from restricted shallow marine to estuarine, lagoonal and finally open marine conditions followed by abrupt emersion and paleosoil deposition prior to the arrival of the upper trap flows at or near the base of C29n.  相似文献   

6.
The carbonate/siliciclastic Miocene rocks in the Cairo-Suez district indicate that lithostratigraphical correlation is very difficult. These beds comprise a complex alternation of autochthonous and detrital sediments. The Lower Miocene age (zone N5 to zone N7) of this succession has been determined by the planktonic foraminifera. In addition, there are benthic assemblages and the larger foraminifera also contributed, to a great extent, to the correlation of the measured sections. Thirty-four of the smallest foraminiferal species, among the 59 recognised, were selected for taxonomic treatment.  相似文献   

7.
Assemblages of benthic foraminifera from one clastic succession in the Afales Basin (Ithaki Island, western Greece) were investigated to reconstruct palaeoenvironmental conditions during the Oligocene. The section consists of alternating hemipelagic marls and detrital deposits, designated as flysch-like beds, attributed to biostratigraphic Zones P20 and P21. Planktic percentages are mostly high (66–80%). Benthic foraminiferal assemblages comprise calcareous and agglutinated taxa (up to 15%). The prevalence of epifaunal foraminifera indicates good ventilation of the bottom water resulting from basin morphology, which enabled the undisturbed flow of water throughout the basin. Palaeodepth estimates imply bathyal deposition, from about 800 to 1200 m deep. The benthic foraminiferal fauna is of high diversity along the section, as is expected in deep marine environments. The abundances of the most common foraminiferal taxa (Cibicidoides spp., Oridorsalis umbonatus, Gyroidinoides spp., Stilostomella spp., Nodosariidae, Nuttallides umbonifera) are quite variable and imply generally oligotrophic to mesotrophic environmental conditions with variable organic flux.  相似文献   

8.
Cenomanian/Turonian boundary (upper Sarvak Formation) benthic foraminiferal assemblages were analyzed to reconstruct oxygen level, primary productivity, and water turbulence in the Izeh Zone, Zagros Basin. The interplay between environmental perturbations during the Oceanic Anoxic Event 2 (OAE2) and regional tectonic activities in the Zagros Basin resulted in formation of various benthic foraminiferal assemblages in the study section. The OAE2 interval at the region of study starts with extinction of rotaliporids at the onset of δ13C positive excursion (peak “a”), which is associated with population of infaunal benthic foraminifera (especially Bolivina alata). The following interval at the onset of Whiteinella archaeocretacea Biozone is characterized by the total absence of benthic taxa and dominance of planoheterohelicids (“Heterohelix shift”) in the black shale strata, indicating expansion of oxygen minimum zone and unhospitable conditions for both benthic and planktic foraminifera. The upper part of OAE2 interval (including δ13C peaks “b” and “c”) coincides with harbinger of Neo-Tethys closure in the Arabian Plate, causing a compressional tectonic regime, and creation of uplifted terrains in the basin. The relative sea level started to locally fall in this succession, which was accompanied by a better ventilation of seafloor, lower TOC contents, and reappearance of benthic foraminifera.  相似文献   

9.
Early Eocene carbonate sediments of the Umlatdoh Limestone (Meghalaya, N-E India) represent a shallow marine shelf environment. The major biotic components characterizing these carbonates are calcareous green algae and small to larger benthic foraminifera. Based on the biogenic associations and general sedimentological features, five major facies types (MFTs) are distinguished. They are dominated by poor to moderately sorted grainstones followed by packstones, rudstones and wackestones. Considerable abundance of Halimeda, scarcity of z-corals and poor to moderate occurrence of filter-feeding organisms imply mesotrophic to a slightly oligotrophic nutrient regime. Rare occurrence of geniculate coralline algae is probably due to the lack of suitable substrate and environmental conditions. High incidence of grainstones and packstones, fairly preserved microfossils and few reworked specimens indicate a parautochthonous mode of deposition. Preponderance of Alveolina and Nummulites indicate the possible advent of larger foraminiferal turnover (LFT) in the east Tethys during or even before early Eocene. A conceptual palaeoenvironmental model for the studied succession is provided to showcase various facies gradients, bathymetry levels and shelf zones pertinent to the Umlatdoh Limestone.  相似文献   

10.
《Cretaceous Research》1988,9(4):321-336
The type section of the marly Daliyya Formation in Daliyat el Karmil, northern Israel, has been examined for planktonic foraminifera and ostracods. The coexisting assemblages of the upper part of the Helvetoglobotruncana helvetica total range zone (= Marginotruncana sigali interval zone) and of the Cythereis rawashensis kenaanensis assemblage zone indicate that this succession is middle Turonian in age. The depth of deposition varied from neritic (100–200 m) to shallow (≈50 m) with a short littoral episode. The palaeobathymetric oscillations agree rather well with global sea-level changes. Included in this paper are taxonomic remarks on some of the foraminifera and ostracods.  相似文献   

11.
Study of an upper Santonian to upper Campanian hemipelagic succession from the southern part of the Romanian Eastern Carpathians enables us to establish an integrated biostratigraphy based on planktonic foraminifera and calcareous nannofossils and to compare this record with the agglutinated foraminiferal biozonation used for the Carpathians.Benthic foraminiferal assemblages were investigated using several methods, such as agglutinated and calcareous benthic foraminiferal morphogroups, and the benthic foraminiferal oxygen index in order to determine their response to environmental parameters in the basin (correlated with sea-level maxima documented by regional sea-level curves for the Tethys). A pattern of changes in benthic foraminiferal communities associated with increased organic carbon flux and rising sea-levels can be summarized as follows in the studied succession. As sea-level begins to rise there is an increase in the proportion of calcareous benthic foraminifera at the expense of agglutinated foraminifera within the benthic assemblages (earliest Campanian, mid-late Campanian). Once sea-level rises, an increase in the elongate keeled morphotype of agglutinated foraminifera (shallower water forms) can be observed, and if sea-level remains high for an extended period (as in the early Campanian) then an invasion of both agglutinated and benthic calcareous foraminifera characteristic of outer shelf-upper slope environments take place in the basin. The variations in tubular and deep infaunal morphotypes of agglutinated foraminifera are ascribed to varying levels of organic carbon flux.  相似文献   

12.
Aeolianites are integral components of many modern and ancient carbonate depositional systems. Southern Australia contains some of the most impressive and extensive late Cenozoic aeolianites in the modern world. Pleistocene aeolianites on Yorke Peninsula are sculpted into imposing seacliffs up to 60 m high and comprise two distinct imposing complexes of the Late Pleistocene Bridgewater Formation. The lower aeolianite complex, which forms the bulk of the cliffs, is a series of stacked palaeodunes and intervening palaeosols. The diagenetic low Mg‐calcite sediment particles are mostly bivalves, echinoids, bryozoans and small benthic foraminifera. This association is similar to sediments forming offshore today on the adjacent shelf in a warm‐temperate ocean. By contrast, the upper aeolianite complex is a series of mineralogically metastable biofragmental carbonates in a succession of stacked lenticular palaeodunes with impressive interbedded calcretes and palaeosols. Bivalves, geniculate coralline algae and benthic foraminifera, together with sparse peloids and ooids, dominate sediment grains. Fragments of large benthic foraminifera including Marginopora vertebralis, a photosymbiont‐bearing protist, are particularly conspicuous. Palaeocean temperatures are interpreted as having been sub‐tropical, somewhat warmer than offshore carbonate factories in the region today. The older aeolianite complex is tentatively correlated with Marine Isotope Stage 11, whereas the upper complex is equivalent to Marine Isotope Stage 5e. Marine Isotope Stage 5e deposits exposed elsewhere in southern Australia (Glanville Formation) are distinctive with a subtropical biota, including Marginopora vertebralis. Thus, in this example, palaeodune sediment faithfully records the nature of the adjacent inner neritic carbonate factory. By inference, aeolianites are potential repositories of information about the nature of long‐vanished marine systems that have been removed due to erosion, tectonic obliteration or are inaccessible in the subsurface. Such information includes not only the nature of marine environments themselves but also palaeoceanography.  相似文献   

13.
The boring activity of microendolithic organisms such as cyanobacteria, chlorophytes, rhodophytes and fungi, represents a major destructive process affecting sediment preservation within reef environments. This study demonstrates the presence of two distinct assemblages of microborers within sediments collected from the fringing reefs of north Jamaica, correlating to the upper (<18 m depth) and lower (>18 m depth) photic zones. The upper photic zone assemblage is dominated by cyanobacteria and chlorophytes, whilst rhodophytes and fungi become more abundant with increasing water depth. Most significant from a grain preservation perspective is the variable nature of grain infestation observed between different reef sites and different carbonate grain types. The highest degree of grain infestation occurs within shallow, low-energy back-reef environments and the most susceptible grains (at all sites) are corals, molluscs and foraminifera. Coralline algae, Halimeda and echinoid fragments are rarely heavily infested. High rates of infestation at back-reef sites result in rapid diminution of the most susceptible grains, especially coral, which are either underrepresented, or contribute only to the finer sediment fractions, in the subsurface. Fore-reef grain assemblages undergo relatively little alteration. Microboring therefore has potential to bias the fossil record by removing the most susceptible skeletal grains. The impact of microboring upon back-reef grain assemblages must be considered when attempting to model depositional processes within both modern and ancient reef environments.  相似文献   

14.
Several sections from the uppermost Eocene and Oligocene of northern Slovenia have been investigated with respect to sedimentary facies, foraminiferal assemblages, stable isotopes, carbonate microfacies, and palynology. The main objective was to reconstruct the paleoenvironmental history of the Paleogene Paratethys in this region of the eastern Alpine realm. The sediments exhibit a transgressive succession beginning with conglomerates, sandstones, and mudstones of fluvial and lacustrine origin followed by carbonates and muddy marls indicating marine conditions. The foraminiferal faunal changes from brackish to shallow marine to deeper marine assemblages and the distribution of the palynofloras corroborate the sedimentological results. Microfacies analysis of the limestones shows a wide variation of shallow water, generally mud-rich facies dominated by coralline algae, foraminifera, and corals. Microfaunas adapted to low-oxygen conditions indicate temporal sluggish bottom-water circulation which can be associated with high fresh-water fluxes. These results are discussed as reflecting both the global sea-level rise during the Early Oligocene and the regional tectonic and climatic evolution.  相似文献   

15.
The Abrakurrie Limestone is an areally extensive, bryozoan-rich unit within the Eucla Platform, a Tertiary carbonate shelf which caps the central part of the southern Australian continental margin. The onshore portion, the topic of this study, has been exposed since middle Miocene time and lies beneath the Nullarbor Plain. The rocks are fine-sand- to granule-sized calcarenites, composed of bryozoans, bivalves, benthic foraminifera and echinoids with lesser numbers of brachiopods, solitary corals and serpulids. They conspicuously lack significant numbers of planktonic foraminifera and coralline algae. Most bryozoan remains are from delicate branching cyclostomes although delicate branching, robust branching, foliose, fenestrate, multilaminar encrusting and free-living cheilostomes are variably abundant in specific units. The poorly lithified sequence is punctuated by well-cemented layers with erosional tops, which are interpreted as hardgrounds. The limestone is interpreted as a cool-water, deep shelf deposit which accumulated in water depths generally greater than 50 m on the inner part of the Eucla Platform. A model which involves deposition and cementation on a carbonate shelf swept by open ocean swells is proposed to explain the style of sedimentation. The shelf is envisaged as partitioned by the depth of the zone of wave abrasion. Sediments were produced throughout, but accumulated only below this depth. When the seafloor was above this depth it was an environment of cementation and erosion. The vertical sequence correlates in a general way with the global sea-level model for the mid-Cenozoic. While accumulation rates for southern Australian carbonates are similar to rates of cool-water carbonate deposition elsewhere (c. 2.5 cm kyr-1), the rate of Abrakurrie accumulation is much less, suggesting that significant time periods are represented by the hardgrounds.  相似文献   

16.
The Asmari Formation is a predominantly carbonate lithostratigraphic unit that outcrops in the Zagros Basin. Micropaleontological studies of the Asmari Formation in the Dehdasht area led to the identification of 51 species of foraminifera taxa. Among the foraminifera, Nummulites cf. vascus, Operculin sp.,Operculina complanata, Eulepidina dilatata, Eulepidina elephantine, Ditrupa sp., Miogypsina sp., Elphidium sp. 14, and Borelis melo curdica are the most important. The Lepidocyclina-Operculina-Ditrupa assemblage zone represents the Rupeliane Chattian age. The Aquitanian age is also defined by co-occurrence of Miogypsina sp. and Elphidium sp. 14, and finally, the first occurrence of Borelis melo curdica represents the Burdigalian. Based on faunal assemblages, the following paleoenvironmental settings are determined for the deposition of the study section:(1) the deep, offshore settings in the aphotic zone dominated by pelagic and small benthic foraminifera;(2) the low energy, turbid and low light parts of the oligophotic zone characterized by large and flat lepidocyclinids(Eulepidina) and Nummulitidae;(3) the low turbidity,deeper part of the inner ramp dominated by Miogypsinoides, Neorotalia, Lepidocyclina, Operculina and Archias;(4) the shallow, marginal marine environment exposed to salinity fluctuations(short-term salinity fluctuations or fully marine conditions) dominated by small benthic Foraminifera(Ammonia and Elphidium);(5) highly translucent, shallowest part of the inner ramp dominated by representatives of Borelis, Meandropsina and Peneroplis. The biotic assemblages represent warm tropical waters with oligotrophic to slightly mesotrophic conditions.  相似文献   

17.
Facies characterization of Piacenzian (late Pliocene) carbonate sediments of the Guitar Formation in Car Nicobar Island,India and the subsequent integration of paleoecological data have been applied to interpret the paleoenvironment of the coralline algal-reef deposits.Thin-section analysis reveals that Amphiroa,Corallina and Jania are the dominant geniculate corallines,while Lithothamnion,Mesophyllum,Phymatolithon,Lithophyllum,Spongites and Lithoporella are the major non-geniculate corallines contributing to the sedimentary facies.Numerous small and larger benthic foraminifera also dominate the biogenic assemblages.Corals,barnacle shells,echinoid spines,fragments of bryozoans,mollusks and ostracodes are the subordinate constituents.Grainstones dominate the studied facies while packstones and boundstones (with wackestone elements) are the sub lithofacies showing a fair representation.Six carbonate facies presenting a complete reef complex have been distinguished that were deposited in shallow intertidal,back-reef shelf/lagoon,reef and deeper fore-reef shelf settings.Evidences of coralline algal and benthic foraminiferal assemblages,taphonomic signatures of abrasion and fragmentation,grain size,angularity and encrustation indicate a shallow to relatively deeper bathymetric horizon of approximately 10-60 m that corresponds to a regime of high to moderate hydrodynamic conditions.  相似文献   

18.
The Saumane‐Venasque compound palaeovalley succession accumulated in a strongly tide‐influenced embayment or estuary. Warm‐temperate normal marine to brackish conditions led to deposition of extensive cross‐bedded biofragmental calcarenites. Echinoids, bryozoans, coralline algae, barnacles and benthic foraminifera were produced in seagrass meadows, on rocky substrates colonized by macroalgae and within subaqueous dune fields. There are two sequences, S1 and S2, the first of which contains three high‐frequency sequences (S1a, S1b and S1c). Sequence 1 is largely confined to the palaeovalley with its upper part covering interfluves. Each of these has a similar upward succession of deposits that includes: (i) a basal erosional surface that is bored and glauconitized; (ii) a discontinuous lagoonal lime mudstone or wackestone; (iii) a thin conglomerate generated by tidal ravinement; (iv) a transgressive systems tract series of cross‐bedded calcarenites; (v) a maximum flooding interval of argillaceous, muddy quartzose, open‐marine limestones; and (vi) a thin highstand systems tract of fine‐grained calcarenite. Tidal currents during stages S1a, S1b and S1c were accentuated by the constricted valley topography, whereas basin‐scale factors enhanced tidal currents during the deposition of S2. The upper part of the succession in all but S1c has been removed by later erosion. There is an overall upward temporal change with quartz, barnacles, encrusting corallines and epifaunal echinoids decreasing but bryozoans, articulated corallines and infaunal echinoids increasing. This trend is interpreted to be the result of changing oceanographic conditions as the valley was filled, bathymetric relief was reduced, rocky substrates were replaced as carbonate factories by seagrass meadows and subaqueous dunes, and the setting became progressively less confined and more open marine. These limestones are characteristic of a suite of similar cool‐water calcareous sand bodies in environments with little siliciclastic or fresh water input during times of high‐amplitude sea‐level change wherein complex inboard antecedent topography was flooded by a rising ocean.  相似文献   

19.
Seagrasses are marine angiosperms that form extensive submarine meadows in the photic zone where carbonate producing biota dwell as epiphytes on the leaves or as infaunal forms, and act as prolific carbonate sediment factories. Because seagrasses have a low preservation potential and records of exceptionally well‐preserved and plant material from marine settings are rare, these palaeoenvironments are difficult to identify in the rock record. Consequently, sedimentological and palaeontological proxies are the main indicators of the presence of seagrass‐dominated ecosystems. This work investigates the skeletal assemblage of Modern (Maldivian and western Mediterranean) and fossil (Eocene; Apula and Oman carbonate platforms and Oligocene; Malta platform) seagrass examples to characterize the skeletal assemblage of modern and fossil seagrasses. Two main types of grains, calcareous algae and foraminifera, constitute around 50% of the bioclastic sediment in both tropical Maldivian and temperate Mediterranean scenarios. However, in the tropical setting they are represented by green algae (Halimeda), while in the Mediterranean they are represented by corallinacean red algae. In contrast, in the Eocene examples, the foraminifera are the most conspicuous group and the green algae are also abundant. The opposite occurs in the Maltese Chattian, which is dominated by coralline algae (mean 42%), although the foraminifera are still abundant. It is suggested to use the term foralgal to identify the seagrass skeletal assemblage. To discriminate between red algae and green algae dominance, the introduction of the prefixes ‘GA’ (green algae) and ‘RA’ (red algae) is proposed. The investigated examples provide evidence that the green algae–foralgal assemblage is typical of tropical, not excessively dense seagrass meadows, characterized by a well‐illuminated substrate to support the development and calcification of the Halimeda thallus. Contrarily, the red algae‐foralgal assemblage is typical of high density tropical to subtropical seagrass meadows which create very dense oligophotic conditions on the sea floor or in temperate settings where Halimeda cannot calcify.  相似文献   

20.
The upper Campanian to upper Maastrichtian sedimentary sequence of the Kiseiba Formation in south Western Desert is sampled and described in two surface sections (Sinn El Kaddab and Wadi Abu Siyal). Forty-four agglutinated foraminiferal species are identified from 42 samples in the studied succession. The benthic foraminiferal assemblages are dominated by agglutinated foraminifera which comprise more than 90% of the assemblage. The agglutinated foraminifera are subdivided into five morphogroups (A, B, C, D, E) according to shell architecture, integrated with the supposed microhabitat and feeding strategy. The foraminiferal assemblage is assigned to mixohaline shallow water environments. These assemblages with Ammoastuta megacribrostomoides and Ammotium bartheli suggest lagoonal environments with considerably reduced salinity in warm climates and high runoff for the late Campanian-Maastrichtian interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号