首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
Mayall Ⅱ = G1 is one of the most luminous globular clusters (GCs) in M31. Here, we determine its age and mass by comparing multicolor photometry with theoretical stellar population synthesis models. Based on far- and near-ultraviolet GALEX photometry, broad-band UBVRI, and infrared JHKs 2MASS data, we construct the most extensive spectral energy distribution of G 1 to date, spanning the wavelength range from 1538 to 20 000A. A quantitative comparison with a variety of simple stellar population (SSP) models yields a mean age which is consistent with G1 being among the oldest building blocks of M31 and having formed within ~1.7 Gyr after the Big Bang. Irrespective of the SSP model or stellar initial mass function adopted, the resulting mass estimates (of order 10^7M⊙) indicate that GI is one of the most massive GCs in the Local Group. However, we speculate that the cluster's exceptionally high mass suggests that it may not be a genuine GC. Our results also suggest that G1 may contain, on average, (1.65±0.63) × 10^2L⊙ far-ultraviolet-bright, hot, extreme horizontal-branch stars, depending on the adopted SSP model. In addition, we demonstrate that extensive multi-passband photometry coupled with SSP analysis enables one to obtain age estimates for old SSPs that have similar accuracies as those from integrated spectroscopy or resolved stellar photometry, provided that some of the free parameters can be constrained independently.  相似文献   

2.
We used multi-component profiles to model the Hβ and [OⅢ]λλ4959,5007 lines of SDSS J143030.22-001115.1, a narrow-line Seyfert 1 galaxy (NLS1) in a sample of 150 NLS1 candidates selected from the Sloan Digital Sky Survey (SDSS), Early Data Release (EDR). After subtracting the Hβ contribution from narrow line regions (NLRs), we found that its full width half maximum (FWHM) of broad Hβ line is nearly 2900km s~(-1) , significantly larger than the customarily adopted criterion of 2000 km s~(-1) . With its weak Fe Ⅱ multiples, we believe that SDSS J143030.22-001115.1 should not be classified as a genuine NLS1. When we calculate the virial black hole masses of NLS1s, we should use the Hβ linewidth after subtracting the NLR component.  相似文献   

3.
1 INTRODUCTION1RXS J232953.9 062814 was identilied as a cataclysndc variable (CV) by Wei et al. (1999)when they selected a brW AGN sample from the optical ideottheations of the Bright SourceCatalog of ROSAT All Sky Survey (RASS-BSC) (Voges et al. 1999). It was classthed as adwarf nova by Hu et al. (1998). The CCD photometric observaioas by Uemura et al. (20()1)on 2001 Nov. 4.47--6.17 revealed superhuIns with amplitudes of 0.2Al.3mag and a periodof 0.046311(12) days, indicati…  相似文献   

4.
We found a NLS1 nucleus in the extensively studied eruptive BL Lac object, 0846+51W1, out of a large sample of NLS1s compiled from the spectroscopic dataset of SDSS DR1. Its optical spectrum can be well decomposed into three components: a power law component from the relativistic jet, a stellar component from the host galaxy, and a component from a typical NLS1 nucleus. The emission line properties of 0846+51W1, FWHM  相似文献   

5.
We apply the turbulent convection model (TCM) to investigate properties of tur-bulence in the solar convective envelope, especially in overshooting regions. The results show TCM gives negative turbulent heat flux uγ′T′in overshooting regions, which is sim-ilar to other nonlocal turbulent convection theories. The turbulent temperature fluctuation T′T′shows peaks in overshooting regions. Most important, we find that the downward overshooting region below the base of the solar convection zone is a thin cellular layer filled with roll-shaped convective cells. The overshooting length for the temperature gradi-ent is much shorter than that for element mixing because turbulent heat flux of downward and upward moving convective cells counteract each other in this cellular overshooting region. Comparing the models' sound speed with observations, we find that raking the convective overshooting into account helps to improve the sound speed profile of our nonlocal solar models. Comparing the p-mode oscillation frequencies with observations,we validated that increasing the diffusion parameters and decreasing the dissipation pa-rameters of TCM make the p-mode oscillation frequencies of the solar model be in betteragreement with observations.  相似文献   

6.
We present estimated ratios of the central black hole mass to the bulge mass (Mbh/Mbulge) for 15 Narrow Line Seyfert 1 galaxies (NLS1s). It is found that NLS1s apparently have lower mass ratios: the average mass ratio is about 1 × 10-4 with a spread of 2, which is one order of magnitude lower than for Broad Line AGNs and quiescent galaxies. This lower value, as compared to that established essentially for all other types of galaxies, can be accounted for by an underestimation of the black hole masses and an overestimation of the bulge masses in the NLS1s.  相似文献   

7.
We examined the correlation between the ROSAT Hardness Ratio 1 and Count Rates eight Narrow-line Seyfert 1 Galaxies (NLS1s) and 14 Broad-line Seyfert 1 Galaxies (BLS1s). We found that six of the NLS1s show a positive HR1-CTs correlation, and seven of the BLS1s, a negative correlation. The other two NLS1s and seven BLS1s do not show any clear HR1-CTs correlation. Thus, the spectral behavior is statistically different for the NLS1s and BLS1s. The different behaviors can possibly be interpreted in terms of a stable ‘soft excess’ that is strong in NLS1s and weak in BLS1s, plus a power law component, common to both, which softens with increasing flux.  相似文献   

8.
In a previous paper, it was suggested that contamination of the nuclear luminosity by the host galaxy plays an important role in determining the parameters of the standard a disk of AGNs. Using the nuclear absolute B band magnitude instead of the total absolute B band magnitude, we have recalculated the central black hole masses, accretion rates and disk inclinations for 20 Seyfert 1 galaxies and 17 Palomar-Green (PG) quasars. It is found that a small value of a is needed for the Seyfert 1 galaxies than for the PG quasars. This difference in a possibly leads to the different properties of Seyfert 1 galaxies and quasars. Furthermore, we find most of the objects in this sample are not accreting at super-Eddington rates if we adopt the nuclear optical luminosity in our calculation.  相似文献   

9.
We present spectropolarimetry data on RE J1034+396, an ultra-soft X-ray narrow-line Seyfert 1 galaxy, and find an upper limit of ∼ 0.4 to the linear polarization in the optical band. This suggests that there is no synchrotron emission in this AGN, and thus it is unlikely that RE J1034+396 is related to BL Lac objects. Furthermore, any other polarization arising from transmission through dust, or reflection from dust and electrons, must be cancelled out by geometrical effects or diluted to a high degree by unpolarized radiation.  相似文献   

10.
We report two new XMM–Newton observations of PG1211+143 in 2007 December, again finding evidence for the fast outflow of highly ionized gas first detected in 2001. Stacking the new spectra with those from two earlier XMM–Newton observations reveals strong and broad emission lines of Fe  xxv and O  viii , indicating the fast outflow to be persistent and to have a large covering factor. This finding confirms a high mass rate for the ionized outflow in PG1211+143 and provides the first direct measurement of a wide angle, subrelativistic outflow from an active galactic nuclei (AGN) transporting mechanical energy with the potential to disrupt the growth of the host galaxy. We suggest PG1211+143 may be typical of an AGN in a rapid super-Eddington growth phase.  相似文献   

11.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

12.
The ROSAT X-ray source 1RXS J114003.0 124112 was identified as a starburst galaxy at redshift 0.177 by He et al. The authors also noted that the source is almost two orders of magnitude brighter in X-ray than the X-ray-brightest starburst galaxy and it seems to be in a merging system, making this source an enigmatic system demanding further observations. Here we report a re-identification of 1RXS J114003.0 124112 using observations on the 2.6m telescope at Byurakan Astrophysical Observatory, Armenia and the SDSS data. The results indicate that the starburst activity is associated with the brighter object of the system, while the fainter object is a typical Seyfert 1 galaxy at a different redshift (0.282). Therefore, the two objects are not in a merging system, and the Seyfert 1 galaxy naturally accounts for the high X-ray flux. Three more objects reside in the vicinity, but they are all too faint to be responsible for the high X-ray flux.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号