首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M.A. Bussell 《Lithos》1983,16(3):169-184
In the Huaura centred complex, a component of the Coastal Batholith of Peru, water undersaturated granitic magma of the San Jeronimo suite rose from an environment of 4–7 kb pressure to be emplaced at pressures of ca. 0.5 kb. Within the suite, different magma compositions originated from the partial melting of contrasting quartz-rich and quartz-poor source rocks. Initially marginal crystallization resulted in granitic textures with early precipitation of plagioclase, quartz, magnetite, biotite and hornblende under relatively reducing conditions. Subsequent residual concentration of water and oxygen in the centre of the pluton gave rise to more oxidizing conditions and ultimately water saturation resulted in rupture of the pluton roof. The consequent quenching resulted in extensive development of granophyric textures in the residual magma. Distribution of Rb, Sr and major elements can be explained largely by fractionation of ca. 18 % of the observed phenocryst assemblage. Ba depletion and Rb enrichment with evolution of the magma suggest an important role for diffusive transfer during the late episode of granophyre crystallization.  相似文献   

2.
Numerical reconstructions of processes that may have operatedduring igneous petrogenesis often model the behaviour of importanttrace elements. The geochemistry of these trace elements maybe controlled by accessory mineral saturation and fractionation.Determination of the saturation point of accessory mineralsin granitoid rocks is ambiguous because assumptions about crystalmorphology and melt compositions do not always hold. An integratedapproach to identifying accessory mineral saturation involvingpetrography, whole-rock geochemical trends, saturation calculationsand mineral chemistry changes is demonstrated here for a compositionallyzoned pluton. Within and between whole-rock samples of the BoggyPlain zoned pluton, eastern Australia, the rare earth element(REE)-enriched accessory minerals zircon, apatite and titaniteexhibit compositional variations that are related to saturationin the bulk magma, localized saturation in intercumulus meltpools and fractionation of other mineral phases. Apatite isidentified as having been an early crystallizing phase overnearly the whole duration of magma cooling, with zircon (andallanite) only saturating in more felsic zones. Titanite andmonazite did not saturate in the bulk magma at any stage ofdifferentiation. Although some trace elements (P, Ca, Sc, Nb,Hf, Ta) in zircon exhibit compositional variation progressingfrom mafic to more felsic whole-rock samples, normalized REEpatterns and abundances (except Ce) do not vary with progressivedifferentiation. This is interpreted to be a result of limitationsto both simple ‘xenotime’ and complex xenotime-typecoupled substitutions. Our data indicate that zircon REE characteristicsare not as useful as those of other REE-rich accessory mineralsas a petrogenetic indicator. KEY WORDS: saturation; zircon; apatite; titanite; magma differentiation; trace elements; REE patterns  相似文献   

3.
可日岩体位于东昆仑造山带东段东昆北构造带,岩性为含暗色微粒包体正长花岗岩。LA-ICP-MS锆石U-Pb同位素定年结果显示寄主岩和暗色微粒包体的结晶年龄分别为231.58±0.49Ma和232.6±2.3Ma。可日正长花岗岩主体为弱过铝质中钾钙碱性I型花岗岩,具有较高的SiO_2含量(72.06%~74.49%)和Na_2O/K_2O(1.00~1.35)、Nb/Ta(15.4~27.9)比值,较低的值(14~31)和Rb/Ba(0.10~0.46)比值,富集大离子亲石元素(LILE),亏损高场强元素(HFSE)。岩体为巴颜喀拉地块同东昆仑地块碰撞后,板片断离持续作用产生的镁铁质熔体底侵中下地壳使其部分熔融的结果。暗色微粒包体同寄主岩具有相近的结晶年龄、较细粒度、含有寄主岩捕获晶、针状磷灰石,显示包体是镁铁质岩浆注入寄主岩快速冷却的产物。由于寄主岩分离结晶,残留熔体与包体的浓度梯度差导致元素扩散,使两者具有物质交换。东昆仑东段晚古生代-早中生代幔源岩浆对花岗质岩浆的影响是一个持续的过程,从俯冲阶段早期流体交代地幔熔融,到俯冲阶段后期板片断离,然后同碰撞阶段板片断离的持续影响,再到后碰撞阶段加厚地壳的拆沉作用,由于地球动力学体制不同,导致幔源岩浆影响的大小和特征不同。可日岩体年龄及岩石成因显示东昆仑地区在232Ma左右处于同碰撞阶段。  相似文献   

4.
The relationship between the magmatism of the Cretaceous Ofuku pluton and mineralization in and around the Akiyoshi Plateau, Yamaguchi Prefecture, Japan was investigated using a combination of field observation, petrographic and geochemical analyses, K–Ar geochronology, and fluid inclusion data. The Ofuku pluton has a surface area of 1.5 × 1.0 km, and was intruded into the Paleozoic accretionary complexes of the Akiyoshi Limestone, Ota Group and Tsunemori Formation in the western part of the Akiyoshi Plateau. The pluton belongs to the ilmenite‐series and is zoned, consisting mainly of early tonalite and granodiorite that share a gradational contact, and later granite and aplite that intruded the tonalite and granodiorite. Harker diagrams show that the Ofuku pluton has intermediate to silicic compositions ranging from 60.4 to 77.9 wt.% SiO2, but a compositional gap exists between 70.5 to 73.4 wt.% SiO2 (anhydrous basis). Modal and chemical variations indicate that the assumed parental magma is tonalitic. Quantitative models of fractional crystallization based on mass balance calculations and the Rayleigh fractionation model using major and trace element data for all crystalline phases indicate that magmatic fractionation was controlled mainly by crystal fractionation of plagioclase, hornblende, clinopyroxene and orthopyroxene at the early stage, and quartz, plagioclase, biotite, hornblende, apatite, ilmenite and zircon at the later stage. The residual melt extracted from the granodiorite mush was subsequently intruded into the northern and western parts of the Ofuku pluton as melt lens to form the granite and aplite. The age of the pluton was estimated at 99–97 Ma and 101–98 Ma based on K–Ar dating of hornblende and biotite, respectively. Both ages are consistent within analytical error, indicating that the Ofuku pluton and the associated Yamato mine belong to the Tungsten Province of the San‐yo Belt, which is genetically related to the ilmenite‐series granitoids of the Kanmon to Shunan stages. The aplite contains Cl‐rich apatite and REE‐rich monazite‐(Ce), allanite‐(Ce), xenotime and bastnäsite‐(Ce), indicating that the residual melt was rich in halogens and REEs. The tonalite–granodiorite of the Ofuku pluton contains many three‐phase fluid inclusions, along with daughter minerals such as NaCl and KCl, and vapor/liquid (V/L) volume ratios range from 0.2 to 0.9, suggesting that the fluid was boiling. In contrast, the granite and aplite contain low salinity two‐phase inclusions with low V/L ratios. The granodiorite occupies a large part of the pluton, and the inclusions with various V/L ratios with chloride daughter minerals suggest the boiling fluids might be related to the mineralization. This fluid could have carried base metals such as Cu and Zn, forming Cu ore deposits in and around the Ofuku pluton. The occurrence and composition of fluid inclusions in the igneous rocks from the Akiyoshi Plateau are directly linked to Cu mineralization in the area, demonstrating that fluid inclusions are useful indicators of mineralization.  相似文献   

5.
This study of La Gloria pluton in the Chilean Andes evaluates what information about magmatic conditions can be extracted from minerals in a granitic pluton, despite lower-temperature re-equilibration. The pluton is zoned vertically from granodiorite/quartz monzodiorite to quartz monzonite at the roof, with the uppermost 1500 m showing the strongest modal and compositional trends. This mimics the pattern frequently inferred from zoning in voluminous ignimbrites: a strongly zoned cap overlying a more homogeneous main␣body. The presence of large, euhedral amphibole ± biotite at the chamber margins and roof indicate that water was concentrated there. Biotite and amphibole compositions indicate a roofward increase in magmatic f HF, f HCl and F/Cl ratio, analogous to pre-eruptive volatile gradients recorded in zoned ignimbrites. Hornblende that crystallized directly from the melt in the volatile-rich wall and roof zones yields total-Al solidification pressures of ˜1 kbar, consistent with the estimated 4000 m of cover at the time of emplacement. In the core of the pluton, actinolitic amphibole formed by reaction of melt with early-crystallized clinopyroxene. Plag-cpx cumulate clots in the lower level are interpreted as early crystallizing phases entrained in rising granitic magma. Cores of amphibole phenocrysts in mafic enclaves suggest initial crystallization at pressures of 2–3 kbar. Lower Ti and Al contents of rims and acicular groundmass amphibole, overlapping the composition of amphibole in the host granitoid, indicate that the enclaves equilibrated with the host at the present exposure level in the presence of interstitial melt. A roofward relative increase in fO2 of the magma is recorded by an increasing proportion of Fe-Ti oxides as a fraction of the mafic phases, greater Mn content of ilmenite, and constant or higher Mg/(Mg+Fe) in hornblende and biotite despite declining whole-rock MgO contents. Association␣of subhedral biotite and magnetite with actinolitic amphibole in clots implies a reaction: K-Ti-hb + O2(gas) = bi + mt + actinolitic amph + titanite. Magnetite coexisting with biotite with Fe/(Fe+Mg) = 0.34– 0.40 implies temperatures of equilibration no lower than about 720–750 °C, i.e., late-magmatic rather than subsolidus. Saturation with respect to a water-rich vapor and subsequent diffusive loss of hydrogen may have caused this oxidation trend, which resulted in the most magnesian mafic phases occurring in the most compositionally evolved rocks, opposite to trends in most zoned ignimbrites, which presumably record conditions nearer the liquidus and prior to exsolution of a water-rich vapor. Two-feldspar and Fe-Ti-oxide geothermometers record subsolidus conditions in the pluton and yield higher temperatures for samples from the roof zone, suggesting that slower cooling at deeper levels allowed these minerals to continue to equilibrate to lower temperatures. Individual minerals span wide ranges in composition at any given level of the pluton, from those appropriate for phenocrysts, to those that record conditions well below the solidus. We suggest that the shallow level and isolated position of the pluton led to rapid escape of magmatic volatiles and rapid cooling, thereby preventing development of a long-lived hydrothermal system. Resulting small water/rock ratios may account for why late-magmatic and subsolidus re-equilibration were not pervasive. Received: 23 August 1996 / Accepted: 18 October 1996  相似文献   

6.
The paper presents original data on the inner structure, mineralogy, and geochemistry of the Late Paleozoic Burgasy quartz syenite massif in western Transbaikalia and mafic microgranular enclaves (MME) in its rocks. The composition of the mafic microgranular enclaves is close to that of phase-1 monzonitoids of this pluton, but the enclaves are not xenoliths of these rocks but were produced by the crystallization of an individual portion of dispersed hybridized basalt melt. The basaltoid nature of the enclaves follows, first of all, from the relict assemblage of calcic plagioclase (An 73–60) and clinopyroxene and from the magmatic dolerite and microgabbro textures of the rocks. The monzonitoid composition of the enclaves was caused by hybridism, which was responsible for the crystallization of quartz, potassic feldspar, and sodic plagioclase due to the introduction of silica, potassium, and some other components. Hybridism was restricted to a boundary crystallization layer in the deep portion of the magmatic chamber (near its bottom). The scatter of the enclaves throughout the whole volume of the pluton is explained by the density inversion of the hybrid layer and material transfer by convective flows. The mafic enclaves crystallized from basaltic melt of within-plate geochemical type. In spite of intense hybridism, the enclaves preserved typical compositional signatures of mafic magma related to the generation of granites in western Transbaikalia in the Late Paleozoic. The basaltoid nature of the mafic enclaves of the Burgasy Massif testifies that magma was simultaneously generated in the mantle and crust during the development of the Late Paleozoic province in the area.  相似文献   

7.
Ilmari Haapala  Sari Lukkari 《Lithos》2005,80(1-4):347-362
The 6×3 km Kymi monzogranite stock represents the apical part of an epizonal late-stage pluton that was emplaced within the 1.65 to 1.63 Ga Wiborg rapakivi batholith. The stock has a well-developed zonal structure, from the rim to the center: stockscheider pegmatite, equigranular topaz granite, porphyritic topaz granite. The contact between the two granites is usually gradational within a few centimeters, but local inclusions of the porphyritic granite in the equigranular granite indicate that the latter solidified later. Hydrothermal greisen and quartz veins, some of which contain genthelvite, beryl, wolframite, cassiterite, and sulfides, cut the granites of the stock and the surrounding country rocks. The equigranular granite contains 1 to 4 vol.% topaz, and its biotite is lithian siderophyllite; the porphyritic granite has 0 to 3 vol.% topaz, and the mica is siderophyllite. The equigranular granite is geochemically highly evolved with elevated Li, Rb, Ga, Ta, and F, and very low Ba, Sr, Ti, and Zr. The REE patterns show deep negative Eu anomalies and tetrad effects indicating extreme magmatic fractionation and aqueous fluid–rock interaction. The zonal structure of the stock is interpreted as a result of differentiation within the magma chamber. Internal convection in the crystallizing magma chamber and upward flow of residual melt as a boundary layer along sloping contacts resulted in accumulation of a layer of highly evolved, volatile-rich magma in the apical part of the chamber. Crystallization of this apical magma produced the stockscheider pegmatite and the equigranular granite; the underlying crystal mush solidified as the porphyritic granite. Much of the crystallization took place from volatile-saturated melt, and episodic voluminous degassing expelled fluids into opened fractures where they or their derivatives reacted with country rocks and caused alteration and mineralization.  相似文献   

8.
Role of melt during deformation in the deep crust   总被引:1,自引:0,他引:1  
Deformation in the deep crust is strongly influenced by the presence of melt. Injected melt (or magma) weakens the crust because strain will tend to localize where melt is present. The amount of strain a pluton may accommodate is dependent on the length of time it takes for a pluton to crystallize and the strain rate. For plutons that intrude into rocks which are near the solidus temperature of the melt, crystallization times can be quite long (> 1Myr).
Partial melting of deep crustal rocks can lead to melt-enhanced embrittlement. This occurs because the volume change for most melting reactions is positive. Therefore, when the rate of melt production outpaces the rate at which melt can leave the system, the melt pressure increases. Eventually, the melt pressure may become sufficiently high that the melting rocks behave in a brittle fashion and fracture.
Conjugate sets of dilatant shear fractures filled with melt occur in migmatite from the Central Gneiss belt (Canada); this suggests that melt-enhanced embrittlement occurred in these rocks. An expression which relates the magnitude of differential stress to the angle between conjugate dilatant shear fractures is derived. Assuming that migmatite has a small tensile strength, differential stresses are ≤ 20 MPa in migmatitic rocks at the time melt-enhanced embrittlement occurs. The occurrence of melt-enhanced embrittlement shows that a switch in deformation mechanism from plastic flow to cataclasis is possible in the deep crust during melting. Furthermore, repeated episodes of melt-enhanced embrittlement in migmatitic rocks may be an efficient mechanism for extracting melt from partially melted terrains.  相似文献   

9.

The role of magmatic differentiation is considered for the formation of the Ulan-Tologoi Ta–Nb–Zr deposit (northwestern Mongolia) related to the eponymous alkali granite pluton. Data are presented on the structure of the pluton, the composition of its rocks, and distribution of rare metal mineralization. The ores of the pluton include alkali granites with contents of ore elements exceeding the normative threshold for Ta (>100 ppm). The rare metal mineralization includes pyrochlore, columbite, zircon, bastnaesite, monazite, and thorite, which are typical of all alkali–salic rocks; however, their amount varies depending on the REE content of the rocks. The pluton was formed ~298 Ma ago under the influence of a mantle-crustal melt source.

  相似文献   

10.
同构造花岗岩的一种显微构造标记   总被引:5,自引:0,他引:5  
在许多同构造花岗岩中,发现一种不同于糜棱基质的微细粒矿物集合体--微粒交生体,充填于大粒级矿物的三结点和接合缝内,体积分数一般为2%-6%,由微粒石英、斜长石、钾长石、蠕状石等组成,成分上与花岗质岩浆的晚期结晶产物相当。根据其产状、成分、岩相学特征及有关实验资料,认为它是较强应力作用下岩石所含少量残余熔体(质量分数约小于3%-5%)的结晶产物,可作为岩体同构造侵位结晶的显微构造标志。  相似文献   

11.
The central pluton within the Neoproterozoic Katharina Ring Complex (area of Gebel Mussa, traditionally believed to be the biblical Mt. Sinai) shows a vertical compositional zoning: syenogranite makes up the bulk of the pluton and grades upwards to alkali-feldspar granites. The latters form two horizontal subzones, an albite–alkali feldspar (Ab–Afs) granite and an uppermost perthite granite. These two varieties are chemically indistinguishable. Syenogranite, as compared with alkali-feldspar granites, is richer in Ca, Sr, K, Ba and contains less SiO2, Rb, Y, Nb and U; Eu/Eu* values are 0.22–0.33 for syenogranite and 0.08–0.02 for alkali-feldspar granites. The δ18O (Qtz) is rather homogeneous throughout the pluton, 8.03–8.55‰. The δ18O (Afs) values in the syenogranite are appreciably lower relative to those in the alkali–feldspar granites: 7.59–8.75‰ vs. 8.31–9.12‰. A Rb–Sr isochron (n = 9) yields an age of 593 ± 16 Ma for the Katharina Ring Complex (granite pluton and ring dikes).

The alkali–feldspar granites were generated mainly by fractional crystallization of syenogranite magma. The model for residual melt extraction and accumulation is based on the estimated extent of crystallization ( 50 wt.%), which approximates the rigid percolation threshold for silicic melts. The fluid-rich residual melt could be separated efficiently by its upward flow through the rigid clusters of crystal phase. Crystallization of the evolved melt started with formation of hypersolvus granite immediately under the roof. Fluid influx from the inner part of the pluton to its apical zone persisted and caused increase of PH2O in the magma below the perthite granite zone. Owing to the presence of F and Ca in the melt, PH2O of only slightly more than 1 kbar allows crystallization of subsolvus Ab–Afs granite. Abundance of turbid alkali feldspars and their 18O/16O enrichment suggest that crystallization of alkali-feldspar granites was followed by subsolvus fluid–rock interaction; the δ18O (Fsp) values point to magmatic origin of fluids.

The stable and radiogenic isotope data [δ18O (Zrn) = 5.82 ± 0.06‰, ISr = 0.7022 ± 0.0064, εNd (T) values are + 3.6 and + 3.9] indicate that the granite magma was generated from a ‘juvenile’ source, which is typical of the rocks making up most of the Arabian–Nubian shield.  相似文献   


12.
The Mt Manypeaks Adamellite is a composite, regionally concordant pluton at least 22 km long and 3 km wide, associated with Precambrian amphibolite facies gneisses of the Albany‐Esperance Block, and situated about 35 km east of Albany, Western Australia. The pluton is surrounded by a granitised aureole, and shows structural and mineralogical harmony with the country rocks. Contacts vary from grada‐tional to sharp. Hence field relations are consistent with syn‐ or late‐kinematic emplacement in the catazone. The normative composition of the pluton corresponds with the thermal trough in the system An‐Ab‐Or‐Q‐H2O at 7 kb PH2O, suggesting an origin involving crystal‐melt equilibria. The pluton is believed to have formed almost in situ by partial anatexis of the country rocks at 700–750°C and a depth of about 25 km during the orogenic episode responsible for regional metamorphism and deformation.  相似文献   

13.
This paper provides important insights into the generation, extraction and crystallization of clast-laden impact melt rocks from the Araguainha impact structure, central Brazil. Despite the mixed nature of the Araguainha target rocks (comprising a 2 km thick sequence of sedimentary rocks and underlying granitic basement), the exposed melt bodies are characterised by an alkali-rich granitic matrix embedding mineral and rock fragments derived only from the target granite. The melt rocks occur in the form of a massive impact melt sheet overlying the eroded central uplift structure, and as melt veins in the granite of the core of the central uplift. Bulk-rock major and trace element data (including platinum group elements) indicate that the precursor melts were generated locally, principally by partial melting of the target granite, without any contribution from the sedimentary sequence or the projectile. The dense network of melt veins was formed in isolation, by selective melting of plagioclase and alkali feldspar within the granite target. Plagioclase and alkali feldspar melted discretely and congruently, producing domains in the matrix of the melt veins, which closely match the stoichiometry of these minerals. The compositionally discrete initial melt phases migrated through a dense network of microfractures before being assembled into larger melt veins. Freezing of the melt veins was substantially fast, and the melt components were quenched in the form of alkali-feldspar and plagioclase schlieren in the matrix of the melt veins. The overlying impact melt rock is, in contrast, characterised by a granophyric matrix consisting of albite, sanidine, quartz, biotite and chlorite. In this case, melt components appear to have been more mobile and to have mixed completely to form a granitic parental melt. We relate the melting of the minerals to post-shock temperatures that exceeded the melting point of feldspars.  相似文献   

14.
This paper presents the first geochemical data on Cr-spinels from ultramafic rocks of the Alkhadyr terrane, which were obtained on a representative collection of samples using modern research methods. The compositional data on melt inclusions allowed the identification of three generations of Cr-spinels on the basis of their morphology, composition, and relationships with the rock-forming minerals. Different types of geochemical zoning were recognized in heterogeneous Cr-spinel grains. The composition of parental melt and crystallization temperatures of the minerals in ultramafic rocks were derived from the compositional data on Cr-spinels and trapped melt inclusions.  相似文献   

15.
The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69–77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45–60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole, sodic plagioclase, mica and quartz. The early formed gabbroic minerals (and their coronas) are very similar to phenocrysts in late basaltic dikes that cut the upper levels of the CP granite. The inferred parental magmas of both dikes and gabbros were very similar to subalkaline basalts of the Patagonian Plateau that erupted at about the same time, 35 km to the east. Mafic and silicic magmas at Cordillera del Paine are consanguineous, as demonstrated by alkalinity and trace-element ratios. However, the contemporaneity of mafic and silicic magmas precludes a parent-daughter relationship. The granitic magma most likely was derived by differentiation of mafic magmas that were similar to those that later intruded it. Or, the granitic magma may have been contaminated by mafic magmas similar to the PMC magmas before its shallow emplacement. Mixing would be favored at deeper levels when the cooling rate was lower and the granitic magma was less solidified.  相似文献   

16.
The S-type Peninsula Pluton (South Africa) exhibits substantial compositional variability and hosts a large variety of mafic and felsic magmatic enclaves with contrasting textures and compositions. Moreover, the pluton is characterized by mechanical concentrations of K-feldspar megacrysts, cordierite and biotite, generating a complex array of magmatic structures including schlieren, pipes, and spectacular sheeted structures. Chemical evidence indicates that the pluton is constructed incrementally by rapid emplacement of numerous magma pulses. Field, and textural data suggest that magmatic structures form by local flow at the emplacement level of highly viscous crystal-rich magmas (i.e. crystallinity up to 50?vol.%) through magma mushes assembled from older batches. At the time of arrival of relatively late magma batches, some areas within the pluton had achieved crystal fractions that allowed the material to act as a solid, whilst maintaining enough melt to prevent formation of sharp intrusional contacts. Magmatic structures represent “snapshots” of processes that operate in multiphase crystal-rich mushes and their genesis is due to mechanical and thermal instabilities in the crystal-rich magma chamber that are triggered by the emplacement of pulses of new magma derived from the melting of a compositionally variable metasedimentary source.  相似文献   

17.
郑双信  杜晓冉 《华北地质》2007,30(3):168-171
前人认为桐柏杂岩系是一套强混合岩化或酸性片麻岩地层,划归为太古界桐柏山群。通过对其地质特征、岩石类型及岩性特征的分析,结合该套岩石的矿物成分、组构特征认为其原岩应属花岗岩类,整个岩体是由不同时代、不同类型花岗岩类组成的一个杂岩体。岩体内构造复杂,岩石普遍遭受了不同期次的韧性变形和碎裂岩化,并被改造为眼球状花岗质变晶糜棱岩或糜棱岩化片麻状花岗岩-花岗质变晶糜棱岩。  相似文献   

18.
The Papoose Flat pluton in the White-Inyo Range, California, is one of the best examples of forcefully emplaced plutons within an arc crust, having internal fabrics and a contact aureole that deformed in a ductile manner. A 2-D numerical model for the thermo-rheological evolution of the pluton–wall rock system is proposed. We explore how the frequency of magma input, from instantaneous, episodic to continuous, affects magma chamber crystallinity and rheology of both the pluton and its contact aureole. We model pluton growth in the depth range of 10–13 km, which is at the brittle–ductile transition of the crust, and in the 7–4 km depth range, where the host rocks are initially brittle. For incremental growth (episodic and continuous), the pluton begins as a sill. With subsequent injections to the bottom, the pluton grows into a laccolith. Results of mid-crustal models show that the ductile region above the Papoose Flat pluton is related to thermal weakening. The ductile region during incremental growth is 100–150 m thick, matching the observed thickness. It is ten times thinner than in the instantaneous growth model. In episodic and continuous models, the upper part of the pluton is fully or quasi-crystalline throughout growth. During continuous growth, it is likely to remain ductile with potential for the development of solid-state fabrics. During episodic growth, strain rates within the pluton during each injection may become sufficiently high to cause embrittlement of magma. In no case a ductile aureole develops above the pluton at the upper-crustal level, but may develop below the pluton, which serves as thermal insulator. Thus, the pluton’s floor may sag. During incremental growth, most of the pluton is below the solidus and brittle. The results suggest that large volcanic eruptions are unlikely to occur by slow pressurization of magma chambers; instead they require rapid injections of large melt volumes.  相似文献   

19.
《Gondwana Research》2002,5(2):307-324
The Caleu pluton (Central Chile) extending over 338 km2 and with more than 1, 400 m of vertical relief intrudes the N-S trending Lower Cretaceous volcano-sedimentary and volcanic successions at a depth equivalent to a pressure of 2 kb. The host, stratified volcanic successions, are tilted about 30°–40° E, whereas the pluton shows paleomagnetic evidence of either tilting of <15° E or clockwise rotation by few degrees.A gradient of westward increasing SiO2 content is recognized across the pluton, giving rise to three N-S elongated zones: Gabbro/Diorite Zone (GDZ), Tonalite Zone (TZ) and Granodiorite Zone (GZ). Biotite and hornblende compositions also exhibit a westward decreasing gradient in Mg/(Mg+Fe), indicating that the more mafic the zone is, the more oxidizing is its crystallization condition. Horizontal inward gradients of progressively less evolved rocks are recognized across GDZ and TZ, whereas no horizontal gradients were found in the GZ. Vertical compositional gradients are recognized in the GDZ and TZ, which consist of an upward increase in SiO2 and decrease in MgO, FeO, Fe2O3, and compatible trace elements. A vertical compositional boundary was recognized along a traverse across the TZ separating two magma pulses with similar trends of compositional variations.The three zones of the Caleu pluton were derived from a common isotopically (Sr-Nd) depleted source. Each zone probably evolved independently, as their compositional characteristics would have not been acquired in situ. The resulting compositional characteristics of the zones would have been developed prior to the intrusion, in a subjacent stratified reservoir placed at about seven kilometers below the pluton.  相似文献   

20.
Suprasolidus continental crust is prone to loss and redistribution of anatectic melt to shallow crustal levels. These processes ultimately lead to differentiation of the continental crust. The majority of granulite facies rocks worldwide has experienced melt loss and the reintegration of melt is becoming an increasingly popular approach to reconstruct the prograde history of melt‐depleted rocks by means of phase equilibria modelling. It involves the stepwise down‐temperature reintegration of a certain amount of melt into the residual bulk composition along an inferred P–T path, and various ways of calculating and reintegrating melt compositions have been developed and applied. Here different melt‐reintegration approaches are tested using El Hoyazo granulitic enclaves (SE Spain), and Mt. Stafford residual migmatites (central Australia). Various sets of P–T pseudosections were constructed progressing step by step, to lower temperatures along the inferred P–T paths. Melt‐reintegration was done following one‐step and multi‐step procedures proposed in the literature. For El Hoyazo granulites, modelling was also performed reintegrating the measured melt inclusions and matrix glass compositions and considering the melt amounts inferred by mass–balance calculations. The overall topology of phase diagrams is pretty similar, suggesting that, in spite of the different methods adopted, reintegrating a certain amount of melt can be sufficient to reconstruct a plausible prograde history (i.e. melting conditions and reactions, and melt productivity) of residual migmatites and granulites. However, significant underestimations of melt productivity may occur and have to be taken into account when a melt‐reintegration approach is applied to highly residual (SiO2 <55 wt%) rocks, or to rocks for which H2O retention from subsolidus conditions is high (such as in the case of rapid crustal melting triggered by mafic magma underplating).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号