共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-glacial tectonic faults in the eastern Swiss Alps occur as single lineaments, clusters of faults or extensive fault zones consisting of several individual faults aligned along the same trend. The orientation of the faults reflects the underlying lithology and the pre-existing structures (joints, pervasive foliations) within these lithologies. Most post-glacially formed faults in the area around Chur, which undergoes active surface uplift of 1.6 mm/year, trend E–W and cut across Alpine and glacial features such as active screes and moraines. Additionally, there are NNW and ENE striking faults reactivating pervasive Alpine foliations and shear zones. Based on a comparison with the nodal planes of recent earthquakes, E–W striking faults are interpreted as active faults. Because of very short rupture lengths and mismatches of fault location with earthquake distribution, magnitude and abundance, the faults are considered to be secondary faults due to earthquake shaking, cumulative deformation in post- or interseismic periods or creep, and not primary earthquake-related faults. The maximum of recent surface uplift rates coincides with the youngest cooling of the rocks according to apatite fission-track data and is therefore a long-lived feature that extends well into pre-glacial times. Isostatic rebound owing to overthickened crust or to melting of glacial overburden cannot explain the observed surface uplift pattern. Rather, the faults, earthquakes and surface uplift patterns suggest that the Alps are deforming under active compression and that the Aar massif basement uplift is still active in response to ongoing collision. 相似文献
2.
The Alps play a pivotal role for glacier and climate reconstructions within Europe. Detailed glacial chronologies provide important insights into mechanisms of glaciation and climate change. We present 26 10Be exposure dates of glacially transported boulders situated on moraines and ice‐moulded bedrock samples at the Belalp cirque and the Great Aletsch valley, Switzerland. Weighted mean ages of ~10.9, 11.1, 11.0 and 9.6 ka for the Belalp, on up to six individual moraine ridges, constrain these moraines to the Egesen, Kartell and Schams stadials during Lateglacial to early Holocene times. The weighted mean age of ~12.5 ka for the right‐lateral moraine of the Great Aletsch correlates with the Egesen stadial related to the Younger Dryas cooling. These data indicate that during the early Holocene between ~11.7 and ~9.2 ka, glaciers in the Swiss Alps seem to have been significantly affected by cold climatic conditions initiated during the Younger Dryas and the Preboreal Oscillation. These conditions resulted in glacier margin oscillations relating to climatic fluctuations during the second phase of the Younger Dryas – and continuing into Boreal times – as supported by correlation of the innermost moraine of the Belalp Cirque to the Schams (early) Holocene stage. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
Abstract Oligocene to Miocene fluvial sandstones from the Swiss Molasse Basin were analysed for sandstone framework composition, heavy minerals, whole‐rock geochemistry and detrital chrome spinel chemistry. Samples were taken from the proximal part of the basin close to the Alpine main thrust and are chronostratigraphically calibrated between 31 and 13 Ma. Sandstone composition allows the identification of different source rocks, and their variation in time and space place constraints on the Oligocene to Miocene evolution of the Central Alps. In the eastern part of the basin, sandstones document a normal unroofing sequence with the downcutting from Austroalpine sedimentary cover into Austroalpine crystalline rocks and, slightly later at ≈ 21 Ma, into Penninic ophiolites. In the central part, downcutting into crystalline basement rocks occurred at ≈ 25 Ma, and the removal of the sedimentary cover was much more advanced than in the east. This may be interpreted as a first signal from the doming of the Lepontine area. At ≈ 20 Ma, extensional tectonics in the hinterland led to the first exposure of low‐grade metamorphic rocks from the footwall of the Simplon Fault in the Central Alps. Erosion of these rocks persisted up to the youngest sediments at ≈ 13 Ma. In the western part of the basin, a contribution from granitoid and (ultra)mafic rocks is documented as early as ≈ 28 Ma. The source for the (ultra)mafic detritus is Penninic ophiolites from the Piemonte zone of the western Alps, which were already exposed at the surface at that time. 相似文献
4.
The Vidigueira–Moura fault (VMF) is a 65 km long, E–W trending, N dipping reverse left-lateral late Variscan structure located in SE Portugal (W Iberia), which has been reactivated during the Cenozoic with reverse right-lateral slip. It is intersected by, and interferes with the NE–SW trending Alentejo–Plasencia fault. East of this intersection, for a length of 40 km the VMF borders an intracratonic tectonic basin on its northern side, thrusting Paleozoic schists, meta-volcanics and granites, on the north, over Cenozoic continental sediments preserved in the basin, on the south. West of the faults intersection, evidence of Cenozoic reactivation is scarce. In the eastern sector, Plio-Quaternary VMF reactivation is indicated by geomorphologic, stratigraphic, and structural data, showing reverse movement with a right-lateral strike-slip component, in response to a NW–SE trending compressive stress. An average vertical displacement rate of 0.06 to 0.08 mm/yr since late Pliocene (roughly the last 2.5 Ma) is estimated. The Alqueva fault (AF) is a subparallel, northward dipping, 7.5 km long anastomosing fault zone that affects Palaeozoic basement rocks, and is located 2.5 km north and on the hanging block of the VMF. The AF is also a reverse left-lateral late Variscan structure, which has been reactivated during the Tertiary with reverse right-lateral slip; however, Plio-Quaternary reactivation was normal left-lateral, as shown by abundant kinematical criteria (slickensides) and geomorphic evidence. It shows an average displacement rate of 0.02 mm/yr for the vertical component of movement in the approximately last 2.5 Ma. It is proposed that the normal displacements on the AF result from tangential longitudinal strain on the upthrown block of the VMF above a convex ramp of this main reverse structure. According to this model of faults interaction, the AF is interpreted to work as a bending-moment fault sited above the VMF thrust ramp. Consequently, it is expected that the displacements on the AF increase towards the topographic surface with the increase in the imposed extension, declining downwards until they vanish above or at the VMF ramp. In order to constrain the proposed scheme, numerical modeling was performed, aiming at the reproduction of the present topography across the faults using different geodynamic models and fault geometries and displacements. 相似文献
5.
This research assesses the morphological consequences of recent (post‐‘Little Ice Age’) paraglacial reworking of valley‐side sediment mantles in the European Alps. It aims to identify the extent and conditioning factors of slope adjustment at sites in the Swiss Alps, model the temporal pattern, and assess the rates of sediment reworking involved. Gully systems have cut into steep, high‐level lateral moraines, and debris cones have accumulated downslope. Debris flow is the dominant agent of sediment transfer. Factors controlling the extent of this activity include moraine slope gradient, relief and moisture availability. Gullies appear to have reached their maximum dimensions within ca. 50 yr of deglaciation, after which gully relief is reduced by removal of inter‐gully slopes and gully infilling (within 80–140 yr). On the most recently deglaciated terrain, minimum erosion rates average ca. 95 mm yr ?1 since gully initiation, greatly exceeding ‘normal’ erosion rates in other environments. Mean annual accumulation of a single debris cone since ice retreat was calculated to be ca. 30 mm yr ?1. Implications of these findings are applied to patterns of paraglacial sediment‐mantled slope adjustment, conceptualising paraglacial landscape response in terms of a sediment release exhaustion model, and paraglacial landform succession. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
6.
The internal sectors of the Orobic Alps (Northern Italy) are characterised by Alpine age regional shortening showing a transition, through time, from plastic to brittle deformation. Thrust faults cut Alpine ductile folds and are marked by cataclasites and, locally, by pseudotachylytes, suggesting that motion was accommodated by seismic frictional slip. In the Eastern Orobic Alps the thrusting initiated at depths deeper than 10 km (the emplacement depth of the Adamello pluton) and possibly continued at shallower depths. This demonstrates that thrust motion occurred between 10 km depth and the brittle-ductile transition, i.e., at mid-crustal depths. The Orobic Alps exhumed paleoseismic zone shows different geometries along strike. In the central sectors of the Orobic Alps, thrust faults, associated with pseudotachylytes, have average dips around 40° and show no pervasive veining. Much steeper thrusts (dips up to about 85°) occur in the eastern Orobic Alps. In this area, faults are not associated with pervasive veining, i.e., fluid circulation was relatively scarce. This suggests that faulting did not occur with supralithostatic fluid pressure conditions. These reverse faults are severely misoriented (far too steep) for fault reactivation in a sublithostatic fluid pressure regime. We suggest that thrust motion likely started when the faults were less steep and that the faults were progressively rotated up to the present day dips. Domino tilting is probably responsible for this subsequent fault steepening, as suggested by a decrease of the steepness of thrust faults from north to south and by systematic rotations of previous structures consistently with tilting of thrust blocks. When the faults became inclined beyond the fault lock-up angle, no further thrusting was accommodated along them. At later stages regional shortening was accommodated by newly formed lower angle shear planes (dipping around 30–40°), consistently with predictions from fault mechanics. 相似文献
7.
AbstractPositive structural inversion involves the uplift of rocks on the hanging-walls of faults, by dip slip or oblique slip movements. Controlling factors include the strike and dip of the earlier normal faults, the type of normal faults — whether they were listric or rotated blocks, the time lapsed since extension and the amount of contraction relative to extension. Steeply dipping faults are difficult to invert by dip slip movements; they form buttresses to displacement on both cover detachments and on deeper level but gently inclined basement faults. The decrease in displacement on the hanging-walls of such steep buttresses leads to the generation of layer parallel shortening, gentle to tight folds — depending on the amount of contractional displacement, back-folds and back-thrust systems, and short-cut thrust geometries — where the contractional fault slices across the footwall of the earlier normal fault to enclose a “floating horse”. However, early steeply dipping normal faults readily form oblique to strike slip inversion structures and often tramline the subsequent shortening into particular directions.Examples are given from the strongly inverted structures of the western Alps and the weakly inverted structures of the Alpine foreland. Extensional faulting developed during the Triassic to Jurassic, during the initial opening of the central Atlantic, while the main phases of inversion date from the end Cretaceous when spreading began in the north Atlantic and there was a change of relative motion between Europe and Africa. During the mid-Tertiary well over 100 km of Alpine shortening took place; Alpine thrusts, often detached along, or close to, the basement-cover interface, stacking the late Jurassic to Cretaceous sediments of the post-extensional subsidence phase. These high level detachments were joined and breached by lower level faults in the basement which, in the external zones of the western Alps, generally reactivated and rotated the earlier east dipping half-graben bounding faults. The external massifs are essentially uplifted half-graben blocks. There was more reactivation and stacking of basement sheets in the eastern part of this external zone, where the faults had been rotated into more gentle dips above a shallower extensional detachment than on the steeper faults to the west.There is no direct relationship between the weaker inversion of the Alpine foreland and the major orogenic contraction of the western Alps; the inversion structures of southern Britain and the Channel were separated from the Alps by a zone of rifting from late Eocene to Miocene which affected the Rhone, Bresse and Rhine regions. Though they relate to the same plate movements which formed the Alps, the weaker inversion structures must have been generated by within plate stresses, or from those emanating from the Atlantic rather than the Tethyan margin. 相似文献
9.
Egesen moraines throughout the Alps mark a glacial advance that has been correlated with the Younger Dryas cold period. Using the surface exposure dating method, in particular the measurement of the cosmogenic nuclide 10Be in rock surfaces, we attained four ages for boulders on a prominent Egesen moraine of Great Aletsch Glacier, in the western Swiss Alps. The 10Be dates range from 10 460±1100 to 9040±1020 yr ago. Three 10Be dates between 9630±810 and 9040±1020 yr ago are based upon samples from the surfaces of granite boulders. Two 10Be dates, 10 460±1100 and 9910±970 yr ago, are based upon a sample from a quartz vein at the surface of a schist boulder. In consideration of the numerous factors that can influence apparently young 10Be dates and the scatter within the data, we interpret the weighted mean of four boulder ages, 9640±430 yr (including the weighted mean of two 10Be dates of the quartz vein), as a minimum age of deposition of the moraine. All 10Be dates from the Great Aletsch Glacier Egesen moraine are consistent with radiocarbon dates of nearby bog‐bottom organic sediments, which provide minimum ages of deglaciation from the moraine. The 10Be dates from boulders on the Great Aletsch Glacier Egesen moraine also are similar to 10Be dates from Egesen moraines of Vadret Lagrev Glacier on Julier Pass, in the eastern Swiss Alps. Both the morphology of the Great Aletsch Glacier Egesen moraine and the comparison with 10Be dates from the inner Vadret Lagrev Egesen moraine support the hypothesis that the climatic cooling that occurred during the Younger Dryas cold episode influenced the glacial advance that deposited the Great Aletsch Glacier Egesen moraine. Because of the large size and slow response time of Great Aletsch Glacier, we suggest that the Great Aletsch Glacier Egesen moraine was formed during the last glacial advance of the multiphased Egesen cold period, the Kromer stage, during the Preboreal chron. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
11.
Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage. 相似文献
13.
The Western Alps’ active tectonics is characterized by ongoing widespread extension in the highest parts of the belt and transpressive/compressive tectonics along its borders. We examine these contrasting tectonic regimes using a multidisciplinary approach including seismotectonics, numerical modeling, GPS, morphotectonics, fieldwork, and brittle deformation analysis. Extension appears to be the dominant process in the present-day tectonic activity in the Western Alps, affecting its internal areas all along the arc. Shortening, in contrast, is limited to small areas located along at the outer borders of the chain. Strike-slip is observed throughout the Alpine realm and in the foreland. The stress-orientation pattern is radial for σ3 in the inner, extensional zones, and for σ1 in the outer, transcurrent/tranpressional ones. Extensional areas can be correlated with the parts of the belt with the thickest crust. Quantification of seismic strain in tectonically homogeneous areas shows that only 10–20% of the geodesy-documented deformation can be explained by the Alpine seismicity. We propose that, Alpine active tectonics are ruled by isostasy/buoyancy forces rather than the ongoing shortening along the Alpine Europe/Adria collision zone. This interpretation is corroborated by numerical modeling. The Neogene extensional structures in the Alps formed under increasingly brittle conditions. A synthesis of paleostress tensors for the internal parts of the West-Alpine Arc documents major orogen-parallel extension with a continuous change in σ3 directions from ENE–WSW in the Simplon area, to N–S in the Vanoise area and to NNW–SSE in the Briançon area. Minor orogen-perpendicular extension increases from N to S. This second signal correlates with the present-day geodynamics as revealed by focal-plane mechanisms analysis. The orogen-parallel extension could be related to the opening of the Ligurian Sea during the Early-Middle Miocene and to compression/rotation of the Adriatic indenter inducing lateral extrusion. 相似文献
14.
The eastern Central Alps consist of several Pennine nappes with different tectonometamorphic histories. The tectonically uppermost units (oceanic Avers Bündnerschiefer, continental Suretta and Tambo nappes, oceanic Vals Bündnerschiefer) show Cretaceous/early Tertiary W-directed thrusting with associated blueschist facies metamorphism related to subduction of the Pennine units beneath the Austroalpine continental crust. This event caused eclogite facies metamorphism in the underlying continental Adula nappe. The gross effect was crustal thickening. The tectonically lower, continental Simano nappe is devoid of any imprint from this event. In the course of continent-continent collision, high- T metamorphism and N-directed movements occurred. Both affected the whole nappe pile more or less continuously from amphibolite to greenschist facies conditions. Crustal thinning commenced during the regional temperature peak. A final phase is related to differential uplift under retrograde P–T conditions. Further thinning of the crust was accommodated by E- to NE-directed extensional deformation. 相似文献
15.
Melting triggered by influx of a free aqueous fluid in the continental crust has commonly been inferred, but the source of water in such contexts remains a matter of debate. We focus on the Tertiary migmatites in the Southern Steep Belt of the Central Alps (Switzerland) to discuss the petrology, structures and geodynamic setting of water-assisted melting. These migmatites comprise various structural types (e.g. metatexites, diatexites, melt in shear zones), which reflect variable leucosome fractions. The melting event itself as well as the variable melt fractions are related to the amount of aqueous fluids. At a given P and T, melt-fractions in rocks of minimum melt composition correlate with the amount of infiltrated aqueous fluids. In more granodioritic systems the water distributes between melt and newly crystallizing hydrous phases such as amphibole, such that the melt fraction correlates with the contents of H 2O, Al, and Ca in the system. Phase-equilibrium modelling indicates that the stabilization of amphibole leads to slightly lower melt fractions than in a granitic system at the same P, T and bulk water content. Phase-equilibrium models further indicate that in the Alpine migmatite belt: (1) several wt.% water (fluid:rock ratio of 1:30) are necessary to produce the inferred melt fraction; (2) the activity of H 2O in the fluid is high; and (3) spatially associated metapelites are unlikely as a source for the required aqueous fluids. We present a tectonic scenario for the southern margin of the Central Alps, to which these migmatites are confined, and we propose that water was produced from dehydration reactions in metapelites in the Southern Alps. We model fluid production rates at the time of melting and demonstrate that the resulting fluid flow pattern is mainly controlled by the differences in permeability between the fluid source region and melting region. The proposed model requires strong gradients in temperature and permeability for the two tectonic blocks. This is consistent with the scenario involving indenter tectonics at the boundary between the Central and the Southern Alps in Oligocene times. 相似文献
16.
Along the SW-NE trending fault zone of Gernsbach (northern Black Forest), over a distance of about 45 km between Baden-Baden and Pforzheim, basal series of the sedimentary cover are extensively altered by hydrothermal solutions. The fluids were conveyed in the fault zone and because of favourable permeabilities they spread out along the unconformity between the basement and sedimentary cover. K-Ar dates on authigenic white micas (illites) and hydrothermally altered detrital micas point to the occurrence of two major episodes of fluid migration. The extensive alteration along the entire fault system occurred about 150 Ma ago during the Jurassic. In relation to these hydrothermal activities, the epigenetic strata-bound uranium deposit of Müllenbach originated in Upper Carboniferous sediments near the fault and the fluorite-quartz vein-type mineralization of Käfersteige was formed along the fault about 100 Ma ago during the Cretaceous. The results indicate various geological processes of the fault system of Gernsbach, which is located between the Saxothuringian and Moldanubian zone. The mobilization of the fluids and the formation of the ore deposits were probably caused by and connected with tectonic activities in mid-Europe. 相似文献
17.
This study is essentially based on coupling macrostructures, microstructures and metamorphic petrology in polymetamorphic mafic rocks from the Swiss Eastern Alps (Suretta nappe, Penninic domain). Petrographic criteria are used in conjunction with structural analysis and microprobe work to define crystallization/deformation relationships and to establish a relative but precise sequence of tectono-metamorphic events. A first eclogite facies overprint and related exhumation occurred before emplacement of late Palaeozoic intrusives. During the Alpine cycle, the Suretta nappe was part of the thinned European continental margin. The Tertiary burial due to subduction and collision is responsible for D1 ductile thrusting and blueschist facies metamorphism. Late deformation phases, related to exhumation, are responsible for the development of extensional structures under greenschist facies conditions. Quantitative metamorphic petrology based on Gibbs free energy minimization (DOMINO by de Capitani) gives a constraint on the P–T conditions during the polymetamorphic and polycyclic evolution. The first high- P metamorphic event related to pre-Alpine structures occurred at c . 700 °C and at least 2.0 GPa. These conditions are compatible with pre-Alpine high- P re-equilibration already described in several Alpine units. The Alpine high- P metamorphism occurred under blueschist facies conditions at c . 400–450 °C and 1.0 GPa. Similar high- P , low- T conditions have already been described in the Mesozoic and Permian rock types. The two high- P events are clearly related to two different geothermal regimes and geodynamic environments. 相似文献
18.
Abstract The chemical evolution of garnets from pelitic rocks of probable Palaeozoic age corresponds to a complex metamorphic evolution of the host rocks. Among the almandine-rich garnets (Alm 60–80), two main types of evolution can be distinguished. Early Mn-rich garnets coexisting with kyanite may be replaced by plagioclase and then, during a late stage, by biotite and/or sillimanite. The second type of evolution corresponds to an overgrowth of Mn-poor late-stage garnet on older Mn-rich garnets which corresponds to a thermal peak with sillimanite-type of metamorphism. This new garnet may appear either as an overgrowth with a strong discontinuity, or as small, new euhedral garnet or as skeletal garnet. This chemical evolution of garnet corresponds to an early collisional stage of metamorphism (of high pressure type with high Mn values) of probable Ordovician age followed by uplift and a thermal peak (low Mn values) in Devonian times. 相似文献
19.
This study aims at the recent activity and development of an active wrench fault, the Touhuanping Fault in northwestern Taiwan. Northwestern Taiwan has been proposed in a current situation between the mature to waning collision in terms of tectonic evolution. The main drainage in this area, the Chungkang River, flows close to the trace of the fault mentioned above. We examined various types of deformation of fluvial terraces along the Chungkang River as a key to understanding the nature and rate of the late Quaternary tectonics. The E–W trending Touhuanping Fault has long been mapped as a geological boundary fault, but its recent activity was suspected. Field survey revealed that its late Quaternary activity is recorded in the offset fluvial terraces. Our result shows dextral slip and vertical offset with upthrown side on the south, and activated at least twice since the emergence of terrace 4 (older terrace 3 with OSL date of ca. 80 ka). Total amount of offset recorded in the Touhuanping terrace sequence is 15 m for dextral and 10 m for vertical offset. Estimated recurrence time of earthquake rupture may be a few tens of thousand years. Uplift on the upthrown side of the Touhuanping Fault also resulted in the formation of drowned valleys which were graded to terrace 4. Other deformation features, such as back-tilting, westward warping, and a range-facing straight scarp, were also identified. A second-order anticline roughly parallel to the Touhuanping Fault is suggested to be the origin of the northward tilting on terrace 3; it could have resulted from a flower structure on the Touhuanping Fault at shallow depth. This may demonstrate that the buried segment of the Touhuanping Fault has also been active since 80 ka. In the northern study area, the westward warping at terrace 2 probably represents late Quaternary activity of another NE–SW trending Hsincheng Fault. 相似文献
20.
The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST, which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field. The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends. The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles. 相似文献
|