首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The faulting mechanism and multiple rupture process of the M = 7.4 Miyagi-Oki earthquake are studied using surface and body wave data from local and worldwide stations. The main results are as follows. (1) P-wave first motion data and radiation patterns of long-period surface waves indicate a predominantly thrust mechanism with strike N10° E, dip 20°W, and slip angle 76°. The seismic moment is 3.1 × 1027 dyne-cm. (2) Farfield SH waveforms and local seismograms suggest that the rupture occurred in two stages, being concordant with the two zones of aftershock activity revealed by the microearthquake network of Tohoku University. The upper and lower zones, located along the westward-dipping plate interface, are separated by a gap at a depth of 35 km and have dimensions of 37 × 34 and 24 × 34 km2, respectively. Rupture initiated at the southern end of the upper aftershock zone and propagated at N20°W subparallel to the trench axis. About 11 s later, the second shock, which was located 30 km landward (westward) of the first, initiated at the upper corner of the lower aftershock zone and propagated down-dip N80°W. Using Haskell modelling for this rupture process, synthetic seismograms were computed for teleseismic SH waves and nearfield body waves. Other parameters determined are: seismic moment M0 = 1.7 × 1027dyne-cm, slip dislocationu = 1.9 m, Δσ = 95 bar, rupture velocity ν = 3.2 km s?1, rise time τ = 2 s, for the first event; M0 = 1.4 × 1027dyne-cm, u = 2.4 m, Δσ = 145 bar, for the second event; and time separation between the two shocks ΔT = 11 s. The above two-segment model does not explain well the sharp onsets of the body waves at near-source stations. An initial break of a small subsegment on the upper zone, which propagated down-dip, was hypothesized to explain the observed near-source seismograms. (3) The multiple rupture of the event and the absence of aftershocks between the two fault zones suggests that the frictional and/or sliding characteristics along the plate interface are not uniform. The rupture of the first event was arrested, presumably by a region of high fracture strength between the two zones. The fracture energy of the barrier was estimated to be 1010 erg cm?2. (4) The possible occurrence of a large earthquake has been noted for the region adjacent to and seaward of the area that ruptured during the 1978 event. The 1978 event does not appear to reduce the likelihood of occurrence of this expected earthquake.  相似文献   

2.
Surface-wave amplitudes in the period range 50–100 s at eight European and North American stations, horizontal slip profiles along the rupture zone and the timing of certain events along the fault during rupture time are all engaged in unison to reconstruct the motion at the source. A modified source model is used to accommodate a moving rupture with variable dislocation in the direction of propagation.It is inferred that the rupture started at about 13 h 11 m 55 s GMT near San Juan Bautista and propagated unilaterally northwestward along N35°W over 400 km with an average rupture velocity of 3.5 km/s. At 13 h 12 m 12 s, the dynamic shear front, moving with the rupture speed, hit the Lick Observatory. Then, at 13 h 12 m 18 s, the rupture arrived to the vicinity of the epicenter in the Santa Cruz Mountains given by B. Bolt. There the slip changed sharply from an average of 0.5 m to a high value of 3 m causing extensive landslides and avalanches. At 13 h 12 m 32.5 s two railroad clocks at San Rafael were stopped. Finally, at 13 h 12 m 36 s the offset front hit the Naval Observatory at Mare Island and stopped the astronomical clocks there. Conspicuous surface waves, visible on Wiechert seismograms in Europe in the period range 55–65 s, reflect the true rupture time.The seismic data inversion yields an effective radiation source some 240 km long with an average vertical extent of some 34 km over a total fault length of 400 km (UdS ? 29,000 m km2or μUdS ? 9 · 1027dyn cm). It began at the Santa Cruz Mountains and ended some 20 km off coast Point Arena. Thus, due to the nonuniform slip profile, only 35 of the total fracture length contributed to the far radiation field.Although the product of the average source displacement (over the entire fault) and the vertical extent appears to be fairly well determined from the surface-wave spectrums, the separate values of these entities cannot be uniquely determined. If the average surface displacements (~ 3.2 m) are diagnostic of the entire fault, a vertical extent of H = 34 km is required.Finally, a new analysis of surface waves from the Alaska earthquake of July 10, 1958, the Queen Charlotte Islands earthquake of August 22, 1949 and the Kern County shock of July 21, 1952, enables us to draw parallels between the three biggest major events which occurred along the NE Pacific coast during 1906–1958. A common feature of all of these earthquakes is that vertical failure extents of 30–40 km are implied.  相似文献   

3.
High-temperature and high-pressure recovery experiments were made on experimentally deformed olivines at temperatures of 1613–1788 K and pressures of 0.1 MPa to 2.0 GPa. In the high-pressure experiments, a piston cylinder apparatus was used with BN and NaCl powder as the pressure medium, and the hydrostatic condition of the pressure was checked by test runs with low dislocation density samples. No dislocation multiplication was observed. The kinetics of the dislocation annihilation process were examined by different initial dislocation density runs and shown to be of second order, i.e.
dρdt= ?p2K0exp[?(E1+PV1RT]
where ρ is the dislocation density, k0 is a constant, E1and V1 are the activation energy and volume respectively, and P, R and T are pressure, gas constant and temperature, respectively. Activation energy and volume were estimated from the temperature and pressure dependence of the dislocation annihilation rate as E1=389±59 kJ mol?1 and V1=14±2 cm3mol?1, respectively.The diffusion constants relevant to the dislocation annihilation process were estimated from a theoretical relation k=αD where k=k0 exp[?(E1 + PV1)/RT], D is the diffusion constant and α is a non-dimensional constant of ca. 300. The results agree well with the self-diffusion constant of oxygen in olivine. This suggests that the dislocation annihilation is rate-controlled by the (oxygen) diffusion-controlled dislocation climb.The mechanisms of creep in olivine and dry dunite are examined by using the experimental data of static recovery. It is suggested that the creep of dry dunite is rate-controlled by recovery at cell walls or at grain boundaries which is rate-controlled by oxygen diffusion. Creep activation volume is estimated to be 16±3 cm3 mol?1.  相似文献   

4.
Lowes (1966, 1974) has introduced the function Rn defined by Rn =(n + 1) m=0 [(gmn)2 + (hmn)2] where gnmand hnm are the coefficients of a spherical harmonic expansion of the scalar potential of the geomagnetic field at the Earth's surface. The mean squared value of the magnetic field B = ??V on a sphere of radius r > α is given by B ·〉 =n=1 Rn(a/r)2n=4where a is the Earth's radius. We refer to Rn as the spherical harmonic spatial power spectrum of the geomagnetic field.In this paper it is shown that Rn = RMn = RCn where the components RnM due to the main (or core) field and RnC due to the crustal field are given approximately by RMn = [(n =1)/(n + 2)](1.142 × 109)(0.288n Λ2 RCn = [(n =1){[1 — exp(-n/290)]/(n/290)} 0.52 Λ2where Iγ = 1 nT. The two components are approximately equal for n = 15.Lowes has given equations for the core and crustal field spectra. His equation for the crustal field spectrum is significantly different from the one given here. The equation given in this paper is in better agreement with data obtained on the POGO spacecraft and with data for the crustal field given by Alldredge et al. (1963).The equations for the main and crustal geomagnetic field spectra are consistent with data for the core field given by Peddie and Fabiano (1976) and data for the crustal field given by Alldredge et al. The equations are based on a statistical model that makes use of the principle of equipartition of energy and predicts the shape of both the crustal and core spectra. The model also predicts the core radius accurately. The numerical values given by the equations are not strongly dependent on the model.Equations relating average great circle power spectra of the geomagnetic field components to Rn are derived. The three field components are in the radial direction, along the great circle track, and perpendicular to the first two. These equations can, in principle, be inverted to compute the Rn for celestial bodies from average great circle power spectra of the magnetic field components.  相似文献   

5.
The dependence of bulk sound speed Vφ upon mean atomic weight m and density ρ can be expressed in a single equation:
Vφ=Bρλ(m0m[12+λ(1?c)](km/sec)
Here B is an empirically determined “universal” parameter equal to 1.42, m0 = 20.2, a reference mean atomic weight for which well-determined elastic properties exist, and λ = 1.25 is a semi empirical parameter equal to γ ? 13 where γ is a Grüneisen parameter. The constant c = (? ln VM/? ln m)X, where VM is molar volume, is in general different for different crystal structure series and different cation substitutions. However, it is possible to use cFe = 0.14 for Fe2+Mg2+ and GeSi substitutions and cCa ? 1.3 for CaMg substitutional series. With these values it is pos to deduce from the above equation Birch's law, its modifications introduced by Simmons to account for Ca-bearing minerals, variations in the seismic equation of state observed by D.L. Anderson, and the apparent proportionality of bulk modulus K to VM?4.  相似文献   

6.
It is shown that there is linearity between the thermal pressure PTH and T between the Debye temperature θ and some high temperature T1. T1 has been measured at 1 atm and is reported for several minerals including, for example, MgO (1300 K) and forsterite (1200 K). The change in thermal pressure from room temperature for five solids, so far measured, indicate striking linearity with T at high temperatures.It is further shown that the value of T1 increases greatly as the pressure increases. It is therefore concluded that PTH is probably linear with T for mantle minerals under mantle conditions. The proportionality constant is derived from the measurements of thermal expansivity and bulk modulus at high temperature and zero pressure.The argument is then reversed. Assuming that the thermal pressure is in fact linear with T for the various shells in a planet, the resulting density and temperature profile of the planet is derived. The resulting density profile of the Earth compares favorably with corresponding values of recent seismic profiles.  相似文献   

7.
An apparatus has been devised which allows precise creep and relaxation measurements to be made on minerals and rocks at temperatures up to 1600°C and at very low deviatoric stresses (1 < σ < 300 bar). This paper is concerned with measurements on mantle peridotite (lherzolite) from Balmuccia (Zone of Ivrea, Italy).The reaction of the sample to a step-like increase in stress is called its “creep function”. It is shown that the creep function contains all the necessary information to derive the spectra of the quality factor Q(ω) and of Young's modulus E(ω), within the seismic range of frequencies, provided the material behaves as a linear system. This has been proven up to a strain of 5 × 10?5.The Q?1-spectra at 1200 and 1300°C, obtained by Fourier inversion from the creep function, show no pronounced peak in the frequency band 0.01 < tf < 1 Hz and exhibit a general tendency to decrease slightly with frequency. The creep function: ?(t) = ?u · [1 + 3.7 · q · {(1 + 50t)0.27 ? }], where q is related to Q, satisfactorily describes the data at high temperatures and leads to Q?1(ω, T) = 3 × 103 · ω?0.27 · exp(?30RT)E(ω) is related to Q(ω) by the material dispersion equation. Above 1100°C the unrelaxed Young's modulus decreases rapidly with temperature according to an activation energy of about 20 kcal/mole. A lowering of short period S-wave velocity by 40% and P-wave velocity by 10% occurs below the solidus. Therefore, no partial melting is required in the asthenosphere.Steady-state creep at low axial stresses (20 < σ < 100 bar), obtained from the same rock, follows the relation ?? = 3 × 107 · δ1.4 · exp(?125RT) indicative of grain boundary diffusion or superplasticity. At higher stresses a power law ?? = 45 · δ4 · exp(?125RT) typical of dislocation creep, is found.The frequency dependence of Q and the ratio of the activation energies of Q and are indicative of so called “high-temperature background absorption”, as the dominant mechanism, and of a diffusion-controlled dislocation mobility common to both absorption and creep. From a, b, and c, relations between the effective viscosity ηf and Q of the form: logηe?? = 1α · logQ ? (n ? 1) · log ω + log D are derived, where α ~ 0.25, n is the power of σ, and D is a constant.  相似文献   

8.
An essentially arbitrary function V(θ, λ) defined on the surface of a sphere can be expressed in terms of spherical harmonics V(θ, Λ) = a n=1m=0npmn (cos θ) (gmn cos mΛ + hmn sin mΛ) where the Pnm are the seminormalized associated Legendre polynomials used in geomagnetism, normalized so that 〈[Pmn(cos θ) cos mΛ]〉2 =1/(2n+1) The angular brackets denote an average over the sphere. The class of functions V(θ, λ) under consideration is that normally of interest in physics and engineering. If we consider an ensemble of all possible orientations of our coordinate system relative to the sphere, then the coefficients gnm and hnm will be functions of the particular coordinate system orientation, but 〈:(gmn)2〉) = 〈(hmn)2 = Sn/(2n=1) where Sn =m=0n [(gmn)2 + (hmn)2] for any orientation of the coordinate system (Sn is invariant under rotation of the coordinate system). The averages are over all orientations of the system relative to the sphere. It is also shown that 〈gmnglp〉 = 〈hmnhlp〉 = 0 for lm or pn and 〈gmnhlp〉 = 0 fro all n, m, p, l.  相似文献   

9.
The phenomenon of the seismic coda, which is composed of seismic energy delayed by scattering, is seen on both the Earth and the Moon. On the Moon the scattered coda is very large relative to body wave arrivals with a delay of the time of maximum energy, whereas on Earth scattered codas are relatively small and show no delay of the energy maximum. In both cases the form of the coda is controlled by three distance scales, the mean free path L, which is the average distance seismic energy travels before it is scattered, the attenuation distance x1, which is the average distance seismic energy travels before it is attenuated, and the source-receiver distance R. Two coda models are discussed based on these parameters; a strong scattering (diffusion) model, and a weak scattering (single scattering) model. A discussion of the diffusion scattering model indicates that if x1/L ? 1, diffusion scattering is an appropriate model, but if x1/L ? 1, single scattering is the appropriate model, within the appropriate range of R. A survey of the literature indicates that for the frequency range 0.5–10 Hz, diffusion scattering is important in lunar codas, but for the frequency range 1–25 Hz single scattering is important in terrestrial codas. Another important effect of attenuation is the elimination of scattering paths much longer than x1. On the Moon, this means that seismic energy in the coda can only propagate directly in the near-surface strong scattering zone between surface sources and the seismometer for source-seismometer separations of the order of (x1L)12; otherwise, scattering is limited to regions near the source and the receiver. On Earth, this effect probably prevents multiple scattering.  相似文献   

10.
On the basis of two assumptions i.e. (1) plastic and anelastic behaviour of the upper mantle can be approximated by the behaviour of the dominant mineral olivine, and (2) the behaviour of natural olivine and synthetic forsterite are similar, we have investigated the flow laws and the flow microstructures of forsterite single crystals. The results obtained between 1400–1650°C and 10–100 MPa suggest a model of climb controlled creep in which the a edge dislocations are dominant. The activation energy measured in that regime is 4.7 eV, close to that of Si self-diffusion and the flow law is ??=106σ2.6exp(?4.7eV/kT), where σ is in MPa. Extrapolation of these results to the upper mantle would imply very low stresses (i.e. ?10 MPa) in the asthenosphere. However the effect of pressure and grain size are unknown and extrapolation to very low stresses is not straightforward.  相似文献   

11.
Seismic source parameters of 27 earthquakes in the magnitude range 7.0–8.5 that occurred during 1906–1969 and that were determined mostly from inversion of long-period seismic surface waves in the period range 100–200 s are re-examined. Among these are five re-evaluations (Chile, May 1960; Sanriku, March 1933; Assam, August 1950; Alaska, July 1958; Alaska, March 1964) and six new analyses (Aleutian Ils., March 1957; Peru, Nov. 1947; New Guinea, Feb. 1938; Queen Charlotte Ils., August 1949; San Francisco, April 1906; Kern County, July 1952).It is shown both theoretically and experimentally that the strong azimuthal dependence of the far displacement field makes the 20-s magnitude vulnerable to uncertainties up to 23 unit of magnitude. These uncertainties are inherent in the magnitude definition, depend on the azimuth of the observer and are unremovable.A remedy is offered in the form of a new magnitude scale, based on the cube root of the potency (product of fault area S and average slip U). In the magnitude range 6.75–8.5 this scale is centigrade. It is shown that (US)13 is the “azimuth-free” part of the Richter magnitude and its adoption as a basis for a new magnitude scale may rid observations of azimuthal ambiguities.  相似文献   

12.
Interdiffusion experiments were performed between Fe3O4 (single crystal) and Fe2.8Ti0.2O4 (powder), under self-buffering conditions (temperature range 600–1034°C), and for various oxygen potentials at 1400°C. Profiles of Fe and Ti were obtained by electronprobe microanalysis, and the interdiffusion coefficient D was calculated by the Boltzmann-Matano method. Low-temperature data at 3 mole% Ti could be described by D = (3.85?1.11+1.68) × 10?3exp(2.23 ± 0.04 eV/kT) cm2/s. An estimate is given for the time to interdiffuse 2μm at various temperatures, and the results compared with recent experiments.  相似文献   

13.
14.
An approximate expression is developed for the relationship between the hydraulic gradient (J), the specific discharge (q) and fluid and porous matrix properties in the case of saturated, steady and uniform (macroscopic) flow of a Newtonian liquid at high Reynolds numbers through a homogeneous anisotropic porous medium:
gJ=(vw(2)+B(4):qq/q+C(3)·qq
In this expression, the tensors w(2), B(4) and C(3) denote properties of the solid matrix only. The tensors W(2), and C(3) are symmetrical; the tensor B(4) is symmetrical only in the first and last pairs of indices. It seems that no mathematical expression with a finite number of parameters exists, which can serve as a universal exact expression for the sought relationship between J and q.  相似文献   

15.
16.
The melting curve of perovskite MgSiO3 and the liquidus and solidus curves of the lower mantle were estimated from thermodynamic data and the results of experiments on phase changes and melting in silicates.The initial slope of the melting curve of perovskite MgSiO3 was obtained as dTm/dP?77 KGPa?1 at 23 GPa. The melting curve of perovskite was expressed by the Kraut-Kennedy equation as Tm(K)=917(1+29.6ΔVV0), where Tm?2900 K and P?23 GPa; and by the Simon equation, P(GPa)?23=21.2[(Tm(K)2900)1.75?1].The liquidus curve of the lower mantle was estimated as Tliq ? 0.9 Tm (perovskite) and this gives the liquidus temperature Tliq=7000 ±500 K at the mantle-core boundary. The solidus curve of the lower mantle was also estimated by extrapolating the solidus curve of dry peridotite using the slope of the solidus curve of magnesiowüstite at high pressures. The solidus temperature is ~ 5000 K at the base of the lower mantle. If the temperature distribution of the mantle was 1.5 times higher than that given by the present geotherm in the early stage of the Earth's history, partial melting would have proceeded into the deep interior of the lower mantle.Estimation of the density of melts in the MgOFeOSiO2 system for lower mantle conditions indicates that the initial melt formed by partial fusion of the lower mantle would be denser than the residual solid because of high concentration of iron into the melt. Thus, the melt generated in the lower mantle would tend to move downward toward the mantle-core boundary. This downward transportation of the melt in the lower mantle might have affected the chemistry of the lower mantle, such as in the D″ layer, and the distribution of the radioactive elements between mantle and core.  相似文献   

17.
The N'Tarla bore-hole groundwaters show an 18O16O isotopic composition different from the mean weighted value of precipitations in this region. On the basis of 14C bicarbonate activity and tritium content, a mixing process of recent and ancient waters is assessed.  相似文献   

18.
19.
Measurements on acoustic pulses propagating in massive rock lead to a simple empirical relationship between the pulse rise time, τ and the time of propagation of a pulse, t:
τ=τ0+C)TQ?1dt
where τ0 is the initial rise time (at t = 0), Q is the anelastic parameter which may be expressed in terms of the fractional loss of energy per cycle of a sinusoidal wave, Q = 2π(ΔE/E)?1, and is assumed to be essentially independent of frequency, and C is a constant whose value we estimate experimentally to be 0.53 ± 0.04. Of the linear theories of seismic pulse attenuation, model 2 of Azimi et al. (1968) is favoured. Pulse shapes computed from equations of Futterman (1962) also give C = 0.5, but the pulse arrives earlier than in a non-attenuating medium with the same elasticity and density. Pulse shapes calculated using Strick's (1967, 1970, 1971) theory give values of C incompatible with our results. The observations suggest that a method of estimating the Q-structure of the earth from seismic pulse rise times may have a particular advantage over the spectral ratio method.  相似文献   

20.
By use of the modern theory of liquids and some guidance from the hard-sphere model of liquid structure, the following new results have been derived for application to the Earth's outer core. (1) dK/dP ? 5 ? 5. 6P/K, where K is the incompressibility and P the pressure. This is valid for a high-pressure liquid near its melting point, provided that the pressure is derived primarily from a strongly repulsive pair potential φ. This result is consistent with seismic data, except possibly in the lowermost region of the outer core, and demonstrates the approximate universality of dK/dP proposed by Birch (1939) and Bullen (1949). (2) dlnTM/dlnρ = (γCV ? 1)/(CV ? 32), where TM is the melting point, ρ the density, γ the atomic thermodynamic Grüneisen parameter and CV the atomic contribution to the specific heat in units of Boltzmann's constant per atom. This reduces to Lindemann's law for CV = 3 and provides further support for the approximate validity of this law. (3) It follows that the “core paradox” of Higgins and Kennedy can only occur if γ < 23. However, it is shown that γ < 23 ? ∫0 (?g/?T)ρ r(d/dr)(r2 φ)dr > 0, which cannot be achieved for any strongly repulsive pair potential φ and the corresponding pair distribution function g. It is concluded that γ > 23 and that the core paradox is almost certainly impossible for any conceivable core composition. Approximate calculations suggest that γ ~ 1.3–1.5 in the core. Further work on the thermodynamics of the liquid core must await development of a physically realistic pair potential, since existing pair potentials may be unsatisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号