共查询到16条相似文献,搜索用时 8 毫秒
1.
The effect of ambient currents on nearshore nonlinear wave–wave energy transfer in random waves is studied with the use of a nonlinear frequency domain wave–current interaction model. We focus on the phenomenon of wave recurrence as a classical nonlinear phenomenon whose characteristics are well established for systems truncated to small numbers of frequency modes. The model used for this study is first extended to enhance accuracy; comparisons of permanent form solutions to analytical forms confirm the model accuracy. Application of the model to a highly truncated system confirmed the model’s consistency with published results for both positive (following) and negative (adverse) currents. Propagation of random wave spectra over a flat bottom was performed with the model, with the intent of determining the prevalence of recurrence between the spectral peak and its harmonics. For spectra of moderate Ursell number, it was found that positive currents extended the length scale of recurrence relative to the case with no currents; conversely, negative currents reduced the recurrence lengths. However, beyond a propagation distance of ≈40 wavelengths of the spectral peak, recurrence becomes almost completely damped as the spectra becomes broad and the spectral energies equilibrate. For spectra of high Ursell number, in contrast, recurrence is almost immediately damped, suggesting that the nonlinearity is sufficient to allow immediate spectral broadening and equilibration and overwhelming any preferential interactions among the spectral peak and its harmonics, regardless of current magnitude or direction. 相似文献
2.
Experimental study of the transformation of bound long waves over a mild slope with ambient currents
The effect of currents on the variation of cross-shore bound long waves forced by bichromatic waves over a plane slope was investigated in the laboratory. In still water the growth rate of the shoaling bound long waves over the slope is proportional to h– 5/2 (h is still-water depth). It was found that the opposing current makes the amplitudes of the bound long waves greater than those of still water for all cases. However, the amplitudes of bound long waves in a following current are reduced in the weakly modulated cases but are enhanced in the fully modulated case. 相似文献
3.
This paper concerns the behaviour of nonlinear regular waves interacting with rectangular submerged breakwaters. A new series of experimental results is presented and compared with numerical calculations based upon a Boundary Element Method (BEM) that utilises multiple fluxes to deal with the discontinuities encountered at the corners of the domain. Specifically, comparisons concern both the spatial water surface profiles at various times and the spatial evolution of the harmonics generated by the breakwaters, the latter being an important focus for the paper. The BEM is shown to accurately model both the water surface profile and the harmonic generation, provided the breakwater width is sufficient to ensure that flow separation is not a controlling influence. Furthermore, evidence is provided to confirm that reflection from rectangular submerged breakwaters is fundamentally a linear phenomenon. 相似文献
4.
A technique is developed to separate the incident and reflected waves propagating on a known current in a laboratory wave–current flume by analyzing wave records measured at two or more locations using a least squares method. It can be applied to both regular and irregular waves. To examine its performance, numerical tests are made for waves propagating on quiescent or flowing water. In some cases, to represent the signal noise and measurement error, white noise is superimposed on the numerically generated wave signal. For all the cases, good agreement is observed between target and estimation. 相似文献
5.
In this paper, a superposition of two periodic wave profiles in a finite water depth was investigated. This paper is focused on the improvement of a wave profile on the linear superposition of two waves. This improvement was realized by introducing an iterative method, which was based on a fixed point approach. Application of the fixed point approach to the wave superposition made it possible to obtain a wave profile of wave–wave interaction. The improved result of the wave profile was in good agreement with that of the nonlinear perturbation solution of the second order. It was interesting that the improved result revealed the higher-order nonlinear frequencies for two interacting Stokes waves while Dalzell's solution by a perturbation method could not predict them. 相似文献
6.
C.Z. Wang 《Ocean Engineering》2005,32(2):107-133
A two-dimensional nonlinear random sloshing problem is analyzed by the fully nonlinear wave velocity potential theory based on the finite element method. A rectangular container filled with liquid subjected to specified horizontal random oscillations is studied. Both wave elevation and hydrodynamic force are obtained. The spectra of random waves and forces have also been investigated, and the effects of the peak frequencies and spectral width of the specified spectrum used for the generation of the random oscillations are discussed. It is found that the energy mainly concentrates at the natural frequencies of the container and is dominant at the ith order natural frequency when the peak frequency is close to the ith order natural frequency. Some results are compared between the fully nonlinear solutions, the linear solutions and the linear plus second-order solutions. 相似文献
7.
基于Jenkins(1989)建立的包含Stokes漂流、风输入和波耗散影响的修正Ekman模型,采用Paskyabi等(2012)使用的推广的Donelan等(1987)中的谱和波耗散函数,并利用Paskyabi等(2012)中修正方法给出的包含高频波的风输入函数,在粘性不依赖于水深及粘性随深度线性变化的条件下,研究了包含高频毛细重力波的随机表面波对Stokes漂流和Song(2009)导出的波浪修正定常Ekman流解的影响。结果表明高频表面波使Stokes漂流在海表面剪切加强,对定常Ekamn流解的影响通常不能忽略,但对Ekman流场的角度偏转影响很小。最后,将考虑高频表面波尾谱影响所估算的定常Ekman流解与已有观测结果以及经典Ekman解进行了比对分析。 相似文献
8.
An analytical solution using homotopy analysis method is developed to describe the nonlinear progressive waves in water of finite depth. The velocity potential of the wave is expressed by Fourier series and the nonlinear free surface boundary conditions are satisfied by continuous mapping. Unlike the perturbation method, the present approach is not dependent on small parameters. Thus solutions are possible for steep waves. Furthermore, a significant improvement of the convergence rate and region is achieved by applying Homotopy-Padé Approximants. The calculated wave characteristics of the present solution agree well with previous numerical and experimental results. 相似文献
9.
水槽实验通常用于波浪传播变形及防波堤护面块体稳定性等研究,涉及的波要素沿水槽纵向变化且在垂直于水槽的横向保持不变。然而实验中当波长与水槽宽度满足一定关系时,可能出现明显的横向波动现象。本文针对对称指数型隆起地形,基于线性长波方程分别推导了其内沿水槽方向的纵波与垂直于水槽方向的横波的解析表达。水槽内对称指数地形上的纵波可以表示为第一类和第二类一阶贝塞尔函数的形式,并结合自由水面及速度连续条件最终得到其完整解。对称指数地形上分别存在偶对称和奇对称模态的横波,可表示为第一类ν阶贝塞尔函数的形式。偶对称模态(n, m)沿水槽方向有n条波节线,在垂直于水槽方向存在2m条波节线;奇对称模态(n, m)沿水槽方向存在n条波节线而在垂直方向有2m − 1条波节线。 相似文献
10.
A statistical model is developed to predict wave overtopping volume and rate of extreme waves on a fixed deck. The probability density function for the volume and rate of overtopping water are formulated based on the truncated Weibull distribution with the assumption of local sinusoidal profile for small amplitude waves. Sensitivity to the wave nonlinearity parameter and deck clearance is discussed. The statistical model is compared to laboratory data of the instantaneous free surface elevation measured in front of a fixed deck, and overtopping volume and overtopping rate measured at the leading edge of the deck. The statistical theory compared well with the measured exceedance probability seaward of the deck. The model prediction of the exceedance probability of deck overtopping gave qualitatively good agreement for large overtopping values. 相似文献
11.
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow
, and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when
, the frequency dispersion can be neglected in supercritical flows. 相似文献
12.
It has been known that the axisymmetric Cauchy–Poisson problem for dispersive water waves is well posed in the sense of stability. Thereby time evolution solutions of wave propagation depend continuously on initial conditions. However, in this paper, it is demonstrated that the axisymmetric Cauchy–Poisson problem is ill posed in the sense of stability for a certain class of initial conditions, so that the propagating solutions do not depend continuously on the initial conditions. In order to overcome the difficulty of the discontinuity, Landweber–Fridman's regularization, famous and well known in applied mathematics, are introduced and investigated to learn whether it is applicable to the present axisymmetric wave propagation problem. From the numerical experiments, it is shown that stable and accurate solutions are realized by the regularization, so that it can be applicable to the determination of the ill-posed Cauchy–Poisson problem. 相似文献
13.
Wave-height distributions and nonlinear effects 总被引:2,自引:0,他引:2
Theoretical distributions proposed for describing the crest-to-trough heights of linear waves are reviewed briefly. To explore the effects of nonlinearities, these are generalized to second-order waves, utilizing quasi-deterministic results on the expected shape of large waves. The efficacy of Gram–Charlier models in describing the effects of third-order nonlinearities on the distributions of wave heights, crests and troughs are examined in detail. All models and a fifth-order Stokes–Rayleigh type model recently proposed are compared with linear and nonlinear waves simulated from the JONSWAP spectrum representative of long-crested extreme seas, and also with oceanic data gathered in the North Sea. Uncertainties arising from the variability of probability estimates derived from sample populations of limited size are considered. Ultimately, the comparisons show that nonlinearities do not have any discernable effect on the crest-to-trough heights of oceanic waves. Most of the linear models considered yield similar and reasonable predictions of the observed data trends. Gram–Charlier type distributions seem neither effective nor particularly useful in describing the statistics of large wave heights or crests under oceanic conditions. However, they do surprisingly well in predicting unusually large wave heights and crests observed in some 2D wave-flume experiments and 3D numerical simulations of long-crested narrow-band random waves. 相似文献
14.
In this study, we investigate two internal wave generation methods in numerical modeling of time-dependent equations for water wave propagation, i.e., delta source function method and source term addition method, the latter of which has been called the line source method in literatures. We derive delta source functions for the Boussinesq-type equations and extended mild-slope equations. By applying the fractional step splitting method, we show that the delta source function method is equivalent to the source term addition method employing the energy velocity. This suggests that the energy velocity should be used rather than the phase velocity for the transport of incident wave energy in the source term addition method. Finally, the performance of the delta source function method is verified by accurately generating nonlinear cnoidal waves as well as linear waves for horizontally one-dimensional cases. 相似文献
15.
In this work, a theoretical analysis of the dynamic response of a poro-elastic soil to the action of long water waves is conducted. For some combinations of the physical parameters of the soil and the water waves, the vertical stress tends towards zero at a certain unknown depth in the soil, as measured from the top of that medium. Under this condition, the liquefaction of the soil is imminent, at which time the excess pore pressure is essentially equal to the overburden soil pressure. Physical problems of this type have been widely studied in the specialized literature. However, most major studies have focused on solving the governing equations together with a liquefaction criterion. Here, the maximum momentary liquefaction depth induced by long water waves is considered as part of the problem, which is treated as an eigenvalue problem. To solve this problem, the governing equations are written in dimensionless form. The theoretical results show that for long waves, the horizontal displacements are smaller in magnitude than the vertical displacements, and when the wavelength or wave period increases, the maximum liquefaction also increases. Analytical solutions for the excess pore pressure and the horizontal and vertical displacements are obtained. The analytical results for the pore pressure are found to be very close to the analytical results reported in the specialized literature. 相似文献
16.
Scales of predator detection behavior and escape in Fissurella limbata: A field and laboratory assessment 下载免费PDF全文
The consumptive effects of predators are widely acknowledged, but predation can also impact prey populations through non‐consumptive effects (NCEs) such as costly antipredator behavioral responses. The magnitude of antipredator behavioral responses by prey is determined by an assessment of risk using sensory cues, which in turn is modulated by the environmental context. We studied the detection behavior and escape response of the keyhole limpet Fissurella limbata from the predatory sea star Heliaster helianthus. Through laboratory and field experimental trials, we quantified the distance and time of predator detection behavior by the prey, and measured their active escape responses when elicited. We found that predator detection by the limpet was chiefly mediated by distance, with experimental individuals capable of detecting predator presence effectively up to distances of at least 50 cm in the field and 70 cm under laboratory conditions. Our results indicate that this prey species is able to evaluate the proximity of its predator and use it as an indication of predation risk; therefore, predator–prey distance appears to be a primary predictor of the magnitude of the antipredator response. Given the tight relationship between predator distance and prey movement and the important role herbivores can play, particularly in this ecosystem, we expect that NCEs will cascade to the patterns of abundance and composition of rocky shore communities through changes in prey foraging behavior under risk. 相似文献