首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

2.
Mineral assemblages in the blueschist-facies metapelites fromthe Ile de Groix (Armorican Massif, France) permit the distinctionof two main units. The Upper Unit is characterized by: (1) highmodal proportions of garnet; (2) larger grain size; (3) therarity of graphite-bearing layers; (4) a single, although composite,foliation S1. A Lower Unit is defined by: (1) low modal proportionsof garnet; (2) smaller grain size; (3) an abundance of graphite-bearinglayers; (4) a pervasive crenulation cleavage S2. In the UpperUnit, coexisting garnet and chloritoid are more magnesian andless manganiferous than in the Lower Unit. The differences inmodal proportions and chemistry of coexisting minerals reflectdifferent P–T conditions. The P–T history of theblueschist-facies metapelites is estimated using a simplifiedpetrogenetic grid in the NFMASH system and thermodynamic calculations,which suggest peak P–T conditions at about P = 16–18kbar, T = 450–500°C and P = 14–16 kbar, T =400–450°C in the Upper and Lower Units, respectively.Peak P–T conditions were followed by a nearly isothermaldecompression for both units at slightly different temperatures(of the order of 50°C). The contact between the two units,i.e. the garnet isograd, is interpreted as a greenschist-faciesductile thrust. Thrusting of the higher-grade unit, i.e. theUpper Unit, over the Lower Unit occurred after the high-pressureevent, i.e. during the exhumation of both units. The observedsuperposition of higher-grade rocks over lower-grade rocks arguesagainst models where the exhumation history is entirely controlledby crustal-scale vertical shortening (i.e. extension). KEY WORDS: Armorican Massif; blueschist facies; Ile de Groix; metapelites; PT path; garnet isograd  相似文献   

3.
Garnet-bearing assemblages of K-rich and K-poor metapelitesfrom the Ilesha Schist belt, SW Nigeria, are investigated. K-richsamples contain the assemblages (A) garnet–staurolite–muscovite–chlorite–magnetite,(B) andalusite–garnet–staurolite–muscovite–chlorite–magnetiteand (C) sillimanite–andalusite–garnet–muscovite–chlorite–magnetite.K-poor samples contain the assemblages (D) garnet–staurolite–cordierite–chloriteand (E) garnet–cordierite–chlorite ± staurolite.All assemblages contain quartz, plagioclase, biotite and ilmenite.PT pseudosections calculated in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2 –H2O ± O2 suggest peak metamorphismat 590 ± 20°C at 5 ± 0·5 kbar, followedby retrogression to 550°C at 3·0 kbar, in agreementwith field evidence, domain assemblages, mineral compositions,modes and geothermobarometry. The absence of compositional zonationshows that garnet in all investigated rocks nucleated and grewat constant P–T–X in equilibrium with associatedminerals on the thin-section scale. However, the garnet-in reactiondid not begin until the establishment of a significant temperatureoverstep of  相似文献   

4.
Both high- and medium-pressure granulites have been found asenclaves and boudins in tonalitic–trondhjemitic–granodioriticgneisses in the Hengshan Complex. Petrological evidence fromthese rocks indicates four distinct metamorphic assemblages.The early prograde assemblage (M1) is preserved only in thehigh-pressure granulites and represented by quartz and rutileinclusions within the cores of garnet porphyroblasts, and omphacitepseudomorphs that are indicated by clinopyroxene + sodic plagioclasesymplectic intergrowths. The peak assemblage (M2) consists ofclinopyroxene + garnet + sodic plagioclase + quartz ±hornblende in the high-pressure granulites and orthopyroxene+ clinopyroxene + garnet + plagioclase + quartz in the medium-pressuregranulites. Peak metamorphism was followed by near-isothermaldecompression (M3), which resulted in the development of orthopyroxene+ clinopyroxene + plagioclase symplectites and coronas surroundingembayed garnet grains, and decompression-cooling (M4), representedby hornblende + plagioclase symplectites on garnet. The THERMOCALCprogram yielded peak (M2) P–T conditions of 13·4–15·5kbar and 770–840°C for the high-pressure granulitesand 9–11 kbar and 820–870°C for the medium-pressuregranulites, based on the core compositions of garnet, matrixpyroxene and plagioclase. The P–T conditions of pyroxene+ plagioclase symplectite and corona (M3) were estimated at  相似文献   

5.
The spinel–garnet transition in Cr/Al-enriched peridotiticbulk compositions is known from experimental investigationsto occur at 20–70 kbar, within the pressure range sampledby kimberlites. We show that the Cr2O3–CaO compositionsof concentrate garnets from kimberlite have maximum Cr/Ca arrayscharacterized by Cr2O3/CaO 0·96–0·81, andinterpret the arrays as primary evidence of chromite–garnetcoexistence in Cr-rich harzburgitic or lherzolitic bulk compositionsderived from depth within the lithosphere. Under Cr-saturatedconditions on a known geotherm, each Cr/Ca array implicitlydelineates an isobar inside a garnet Cr2O3–CaO diagram.This simplification invites a graphical approach to calibratean empirical Cr/Ca-in-pyrope barometer. Carbonaceous chromite–garnetharzburgite xenoliths from the Roberts Victor kimberlite tightlybracket a graphite–diamond constraint (GDC) located atCr2O3 = 0·94CaO + 5·0 (wt %), representing a pivotalcalibration corresponding to 43 kbar on a 38 mW/m2 conductivegeotherm. Additional calibration points are established at 14,17·4 and 59·1 kbar by judiciously projecting garnetcompositions from simple-system experiments onto the same geotherm.The garnet Cr/Ca barometer is then simply formulated as follows(in wt %):
if Cr2O3 0·94CaO + 5, then P38 (kbar) = 26·9+ 3·22Cr2O3 – 3·03CaO, or
if Cr2O3 <0·94CaO + 5, then P38 (kbar) = 9·2+ 36[(Cr2O3+ 1·6)/(CaO + 7·02)].
A small correction to P38 values, applicable for 35–48mW/m2 conductive geotherms, is derived empirically by requiringconventional thermobarometry results and garnet concentratecompositions to be consistent with the presence of diamondsin the Kyle Lake kimberlite and their absence in the Zero kimberlite.We discuss application of the P38 barometer to estimate (1)real pressures in the special case where chromite–garnetcoexistence is known, (2) minimum pressures in the general casewhere Cr saturation is unknown, and (3) the maximum depth ofdepleted lithospheres, particularly those underlying Archaeancratons. A comparison with the PCr barometer of Ryan et al.(1996, Journal of Geophysical Research 101, 5611–5625)shows agreement with P38 at 55 ± 2 kbar, and 6–12%higher PCr values at lower P38. Because the PCr formulationsystematically overestimates the 43 kbar value of the GDC by2–6 kbar, we conclude that the empirical Cr/Ca-in-garnetbarometer is preferred for all situations where conductive geothermsintersect the graphite–diamond equilibrium. KEY WORDS: Cr-pyrope; chromite; P38 barometer; mantle petrology; lithosphere thickness  相似文献   

6.
The role of clinopyroxene in producing grandite garnet is evaluatedusing data from an ultrahigh-temperature metamorphosed calc-silicategranulite occurrence in the Eastern Ghats Belt, India. ‘Peak’pressure–temperature conditions of metamorphism were previouslyconstrained from associated high Mg–Al granulites as c.0·9 GPa, >950°C, and the rocks were near-isobaricallycooled to c. 750°C. Grandite garnet of variable compositionwas produced by a number of reactions involving phases suchas clinopyroxene, scapolite, plagioclase, wollastonite and calcite,in closely spaced domains. Compositional heterogeneity is preservedeven on a microscale. This precludes pervasive fluid fluxingduring either the peak or the retrograde stage of metamorphism,and is further corroborated by computation of fluid–rockratios. With the help of detailed textural and mineral compositionalstudies leading to formulation of balanced reactions, and usingan internally consistent thermodynamic dataset and relevantactivity–composition relationships, new petrogenetic gridsare developed involving clinopyroxene in the system CaO–Al2O3–FeO–SiO2–CO2–O2in TaCO2fO2 space to demonstrate the importanceof these factors in the formation of grandite garnet. Two singularcompositions in garnet-producing reactions in this system arededuced, which explain apparently anomalous textural relations.The possible role of an esseneite component in clinopyroxenein the production of grandite garnet is evaluated. It is concludedthat temperature and fO2 are the most crucial variables controllinggarnet composition in calc-silicate granulites. fO2, however,behaves as a dependent variable of CO2 in the fluid phase. Externalfluid fluxing of any composition is not necessary to producechemical heterogeneity of garnet solid solution. KEY WORDS: grandite garnet; role of clinopyroxene; internal buffering; oxidation–decarbonation equilibria  相似文献   

7.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

8.
We document experiments on a natural metapelite in the range650–775°C, 6–14 kbar, 10 wt % of added water,and 700–850°C, 4–10 kbar, no added water. Staurolitesystematically formed in the fluid-present melting experimentsabove 675°C, but formed only sporadically in the fluid-absentmelting experiments. The analysis of textures, phase assemblages,and variation of phase composition and Fe–Mg partitioningwith P and T suggests that supersolidus staurolite formed at(near-) equilibrium during fluid-present melting reactions.The experimental results are used to work out the phase relationsin the system K2O–Na2O–FeO–MgO–Al2O3–SiO2–H2Oappropriate for initial melting of metapelites at the upperamphibolite facies. The PT grid developed predicts theexistence of a stable PT field for supersolidus staurolitethat should be encountered by aluminous Fe-rich metapelitesduring fluid-present melting at relatively low temperature andintermediate pressures (675–700°C, 6–10 kbarfor XH2O = 1, in the KNFMASH system), but not during fluid-absentmelting. The implications of these findings for the scarcityof staurolite in migmatites are discussed. KEY WORDS: metapelites; migmatites; partial melting; PT grid; staurolite  相似文献   

9.
Metapelitic gneisses from the Glenfinnan Group of the MoineSupergroup, Scotland, contain sparse large and numerous smallgarnets, associated with complex zoned epidote and plagioclasein a biotite matrix. The large garnets show four zones (AI–AIV),whereas the small garnets show three or fewer zones, indicatingsuccessive garnet nucleation with increasing nucleation densities.Garnet zones AI and AIV grew under static conditions, whereasthe formation of AII and AIII was accompanied by deformation.Garnet zones AI and AII were formed in the assemblage (all +biotite + epidote + plagioclase + quartz + fluid + apatite)garnet + chlorite + muscovite ± ilmenite ± sphene± magnetite; zone AIII in the assemblage garnet + muscovite+ sphene ± magnetite; and zone AIV in the assemblagegarnet + sphene ± ilmenite. The chemical zonation andmicrostructures of garnet A indicate two important discontinuities;one at the transition between garnet zones AI and AII, and asecond between zones AII and AIII, which correlate with complexzonation shown by epidote and plagioclase. These discontinuitiesmay result from polymetamorphic garnet growth during differentorogenic cycles affecting the Moine Supergroup. Geothermobarometriccalculations and Gibbs method modelling provide evidence thatgarnet zone AI grew rapidly during heating from about 550 to560°C at pressures of about 4–6 kbar. In contrast,the formation of zone AII was accompanied by nearly isothermalcompression from 6 to 8·5 kbar (560 575°C), indicatingcrustal stacking. After a certain period of cooling, garnetzone AIII grew during renewed heating at P–T conditionsof about 640°C and pressures between 5 and 9 kbar. Growthof garnet AIV was accompanied by further temperature rise, reachingmaximum conditions of about 670°C at 5 kbar. KEY WORDS: epidote; garnet; Gibbs method; Moine Supergroup; P–T path  相似文献   

10.
Using an internally consistent thermodynamic dataset and updatedmodels of activity–composition relation for solid solutions,petrogenetic grids in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O)and the subsystems NKMASH and NKFASH have been calculated withthe software THERMOCALC 3.1 in the PT range 5–36kbar and 400–810°C, involving garnet, chloritoid,biotite, carpholite, talc, chlorite, kyanite/sillimanite, staurolite,phengite, paragonite, albite, glaucophane, jadeite, with quartz/coesiteand H2O in excess. These grids, together with calculated AFMcompatibility diagrams and PT pseudosections, are shownto be powerful tools for delineating the phase equilibria andPT conditions of Na-bearing pelitic assemblages for avariety of bulk compositions from high-P terranes around theworld. These calculated equilibria are in good agreement withpetrological studies. Moreover, contours of the calculated phengiteSi isopleths in PT pseudosections for different bulkcompositions confirm that phengite barometry is highly dependenton mineral assemblage. KEY WORDS: phase relations; HP metapelite; NKFMASH; THERMOCALC; phengite geobarometry  相似文献   

11.
Peridotites in the Ulten Zone (Upper Austroalpine, Eastern Alps),occur as small bodies within lower-crustal rocks (gneisses andmigmatites) subducted at eclogite-facies conditions during theVariscan orogeny. They record a complex metamorphic and deformationevolution as indicated by the transition from coarse-grainedspinel-bearing peridotites to fine-grained garnet + amphibole-bearingperidotites, and are interpreted as portions of mantle wedgethat were incorporated in a downgoing slab of cold continentalcrust. The transition from spinel- to garnet-bearing assemblagewas accompanied by significant input of metasomatic agents,as shown by the crystallization of abundant amphibole. Herewe present trace-element mineral chemistry data for selectedUlten peridotites, with the aim of unravelling the nature ofthe metasomatic processes. Amphiboles display significant lightrare earth element (LREE) enrichment [CeN/YbN = 3·90–11·50;LREE up to (20–50) x C1], high Sr (150–250 ppm),K (1910–7280 ppm) and Ba (280–800 ppm) contents,and low concentrations of high field strength elements (HFSE)(Zr = 14–25 ppm, Y = 6·7–16 ppm, Ti = 1150–2500ppm, Nb = 2–7 ppm). On the basis of (1) the evidence formodal orthopyroxene decrease as a result of the garnet-formingreaction rather than abundant orthopyroxene crystallization,(2) the high modal amounts of amphibole (up to 23%) in the mostmetasomatized peridotites and (3) the strong large ion lithophileelement (LILE)/HFSE fractionation in amphiboles, we infer thatthe metasomatic agent was an H2O–CO2 fluid with a lowCO2/H2O ratio. Petrological investigations and geochronologicaldata indicate that the host metapelites experienced in situpartial melting and migmatization concomitantly with the garnet+ amphibole-facies recrystallization in the enclosed peridotites.We infer that the metasomatizing hydrous fluids could representthe residual fluids left after the crystallization of leucosomes,starting from water-undersaturated melts produced during migmatizationof the host gneisses. KEY WORDS: garnet peridotite; crustal metasomatism; amphibole; hydrous fluids  相似文献   

12.
Alpine-type peridotites and associated pyroxenites are foundas lenses in the continental crust in many different orogens.The reconstruction of the pressure–temperature (P–T)evolution of these rocks is, however, difficult or even impossible.With geothermobarometry, usually one point on the overall P–Tpath can be obtained. To use the different mineral assemblagesobserved in ultramafic rocks as P–T indicators, quantitativeP–T phase diagrams are required. This study presents newcalculated phase diagrams for peridotitic and pyroxenitic rocksin the model systems CaO–MgO–Al2O3–SiO2–H2O(CMASH) and Na2O–CaO–MgO–Al2O3–SiO2–H2O(NCMASH), which include the respective solid solutions as continuousexchange vectors. These phase diagrams represent applicablepetrogenetic grids for peridotite and pyroxenite. On the basisof these general petrogenetic grids, phase diagrams for particularperidotite and pyroxenite bulk compositions are constructed.In an example of pyroxenite from the Shackleton Range, Antarctica,the different observed mineral assemblages are reflected bythe phase diagrams. For these rocks, a high-pressure metamorphicstage around 18 kbar and an anticlockwise P–T evolution,not recognized previously, can be inferred. KEY WORDS: Antarctic; high-pressure metamorphism; peridotite; phase diagrams; pyroxenite  相似文献   

13.
Anhydrite solubility in H2O–NaCl solutions was measuredat 6–14 kbar, 600–800°C and NaCl mole fractions(XNaCl) of 0–0·3 in piston–cylinder apparatus.Solubilities were determined by weight changes of natural anhydritein perforated Pt envelopes confined with fluid in larger Ptcapsules. In initially pure H2O at 10 kbar and 800°C, CaSO4concentration is low (0·03 molal), though much largerthan at the same temperature and 1 kbar. Hematite-buffered experimentsshowed slightly lower solubilities than unbuffered runs. CaSO4solubility increases enormously with NaCl activity: at 800°Cand 10 kbar and XNaCl of 0·3, CaSO4 molality is 200 timeshigher than with pure H2O. Whereas CaSO4 solubility in pureH2O decreases with rising T at low T and P, the high-P resultsshow that anhydrite solubility increases with T at constantP at all XNaCl investigated. The effects of salinity and temperatureare so great at 10 kbar that critical mixing between sulfate-richhydrosaline melts and aqueous salt solutions is probable at900°C at XNaCl 0·3. Recent experimental evidencethat volatile-laden magmas crystallizing in the deep crust mayevolve concentrated salt solutions could, in light of the presentwork, have important implications regarding such diverse processesas Mount Pinatubo-type S-rich volcanism, high-f O2 regionalmetamorphism, and emplacement of porphyry Cu–Mo ore bodies,where anhydrite–hematite alteration and fluid inclusionsreveal the action of very oxidized saline solutions rich insulfur. KEY WORDS: anhydrite; sulfur; solubility; metamorphic brines; granulites  相似文献   

14.
INUI  M.; TORIUMI  M. 《Journal of Petrology》2004,45(7):1369-1392
Chemical zoning of garnet is often used to deduce PTpaths of rocks by inverse calculation. To validate the derivedPT paths, it is desired to establish a method to predictthe chemical compositions of garnet theoretically. This studyproposes a new forward calculation of the formation of Mg–Fe–Mngarnet from chlorite, which solves the non-linear simultaneousequations using nested iterative calculations. Growth of garnetconsuming chlorite and quartz was modelled in a MnO–FeO–MgO–Al2O3–SiO2–H2Osystem, using the most recent thermodynamic data for the minerals.The prograde PT history of the Sambagawa metamorphicbelt, SW Japan, was modelled. To reproduce growth zoning, crystallizedgarnet was removed step by step from the system; perfect diffusionwas assumed for chlorite. The proposed model derived the evolutionof molar amounts and chemical compositions of Mg–Fe–Mnchlorite and garnet. It successfully reproduced the shape ofthe observed chemical profile of garnet, although the temperaturecondition was higher than general observations. The Mn contentof the garnet core was generally high, and Mg/Fe ratio alwaysstarted rising rapidly after Mn was depleted. Thermodynamicproperties of minerals, initial chlorite composition, PTpath, H2O partial pressure, and Ca content in garnet were variedto test the behaviour of the system. The properties of Mn phasesinfluenced only the chemical composition of the garnet core.The temperature range in which garnet grew depended on the H2Opartial pressure or the Ca content in garnet. KEY WORDS: chemical equilibrium; chemical zoning; garnet; forward modelling; Sambagawa metamorphic belt  相似文献   

15.
A suite of garnetiferous amphibolites and mafic granulites occuras small boudins within layered felsic migmatite gneiss in thenorthern part of the Sausar Mobile Belt (SMB), the latter constitutingthe southern component of the Proterozoic Central Indian TectonicZone (CITZ). Although the two types of metabasites are in variousstages of retrogression, textural, compositional and phase equilibriastudies attest to four distinct metamorphic episodes. The earlyprograde stage (Mo) is represented by an inclusion assemblageof hornblende1 + ilmenite1 + plagioclase1 ± quartz andgrowth zoning preserved in garnet. The peak assemblage (M1)consists of porphyroblastic garnet + clinopyroxene ±quartz ± rutile ± hornblende in mafic granulitesand garnet + quartz + hornblende in amphibolites and stabilizedat pressure–temperature conditions of 9–10 kbarand 750–800°C and 8 kbar and 675°C, respectively.This was followed by near-isothermal decompression (M2), andpost-decompression cooling (M3) events. In mafic granulites,the former resulted in the development of early clinopyroxene2A–hornblende2A–plagioclase2Asymplectites at 8 kbar and 775°C (M2A stage), synchronouswith D2 and later anhydrous clinopyroxene2B–plagioclase2B–ilmenite2Bsymplectites and coronal assemblages at 7 kbar, 750°C (M2Bstage) and post-dating D2. In amphibolites, ilmenite + plagioclase+ quartz ± hornblende symplectites appeared during M2at 6·4 kbar and 700°C. During M3, coronal garnet+ clinopyroxene + quartz ± hornblende-bearing symplectitesin metabasic dykes and hornblende3–plagioclase3 symplectitesembaying garnet in mafic granulites were formed. PT estimatesshow near-isobaric cooling from 7 kbar and 750°C to 6 kbarand 650°C during M3. It is argued that the decompressionin the mafic granulites is not continuous, being punctuatedby a distinct heating (prograde?) event. The latter is alsocoincident with a period of extension, marked by mafic dykeemplacement. The combined PT path of evolution has aclockwise sense and provides evidence for a major phase of earlycontinental subduction in parts of the CITZ. This was followedby a later continent–continent collision event duringwhich granulites of the first phase became tectonically interleavedwith younger lithological units. This tectonothermal event,of possibly Grenvillian age, marks the final amalgamation ofthe North and the South Indian Blocks along the CITZ to producethe Indian subcontinent. KEY WORDS: Central Indian Tectonic Zone; clockwise PT path; continental collision; metabasite  相似文献   

16.
The early augite syenite unit in the 1·13-Ga-old Ilímaussaqintrusive complex, South Greenland, consists of a magmatic assemblageof ternary alkali feldspar + fayalitic olivine + augite + titanomagnetite+ apatite + baddeleyite ± nepheline ± quartz ±ilmenite ± zircon. Feldspar, nepheline and QUILF thermometryyield T = 1000–700°C, at P = 1 kbar, which is derivedfrom fluid inclusion data from other parts of the complex. Ternaryfeldspar was the first major liquidus phase. It crystallizedat temperatures between 950 and 1000°C from a homogeneousmagma with aSiO2 = 0·8 and fO2 about 1·5–2log units below the fayalite–magnetite–quartz (FMQ)buffer. Later, closed system fractionation produced nepheline-bearingassemblages with aSiO2 = 0·4 and log fO2 = FMQ –3 to FMQ – 5. Assimilation of wall rocks produced localvariations of melt composition. Four traverses through the unitwere sampled parallel to the assumed direction of crystallization.They exhibit significant differences in their mineral assemblagesand compositions. The chemical zoning and calculated intensiveparameters of four sample suites reflect both closed systemfractional crystallization and local assimilation of wall rocks. KEY WORDS: alkaline magmatism; assimilation; fractionation; redox equilibria; QUILF  相似文献   

17.
Multianvil melting experiments in the system CaO–MgO–Al2O3–SiO2–CO2(CMAS–CO2) at 3–8 GPa, 1340–1800°C, involvingthe garnet lherzolite phase assemblage in equilibrium with CO2-bearingmelts, yield continuous gradations in melt composition betweencarbonatite, kimberlite, melilitite, komatiite, picrite, andbasalt melts. The phase relations encompass a divariant surfacein PT space. Comparison of the carbonatitic melts producedat the low-temperature side of this surface with naturally occurringcarbonatites indicates that natural magnesiocarbonatites couldbe generated over a wide range of pressures >2·5 GPa.Melts analogous to kimberlites form at higher temperatures alongthe divariant surface, which suggests that kimberlite genesisrequires more elevated geotherms. However, the amount of waterfound in some kimberlites has the potential to lower temperaturesfor the generation of kimberlitic melts by up to 150°C,provided no hydrous phases are present. Compositions resemblinggroup IB and IA kimberlites are produced at pressures around5–6 GPa and 10 GPa, respectively, whereas the compositionsof some other kimberlites suggest generation at higher pressuresstill. At pressures <4 GPa, an elevated geotherm producesmelilitite-like melt in the CMAS–CO2 system rather thankimberlite. Even when a relatively CO2-rich mantle compositioncontaining 0·15 wt % CO2 is assumed, kimberlites andmelilitites are produced by <1% melting and carbonatitesare generated by even smaller degrees of melting of <0·5%. KEY WORDS: carbonatite; CO2; kimberlite; melilitite; melt generation  相似文献   

18.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

19.
Biotite + plagioclase + quartz (BPQ) is a common assemblagein gneisses, metasediments and metamorphosed granitic to granodioriticintrusions. Melting experiments on an assemblage consistingof 24 vol. % quartz, 25 vol. % biotite (XMg = 0·38–0·40),42 vol. % plagioclase (An26–29), 9 vol. % alkali feldsparand minor apatite, titanite and epidote were conducted at 10,15 and 20 kbar between 800 and 900°C under fluid-absentconditions and with small amounts (2 and 4 wt %) of water addedto the system. At 10 kbar when 4 wt % of water was added tothe system the biotite melting reaction occurred below 800°Cand produced garnet + amphibole + melt. At 15 kbar the meltingreaction produced garnet + amphibole + melt with 2 wt % addedwater. At 20 kbar the amphibole occurred only at high temperature(900°C) and with 4 wt % added water. In this last case themelting reaction produced amphibole + clinopyroxene ±garnet + melt. Under fluid-absent conditions the melting reactionproduced garnet + plagioclase II + melt and left behind a plagioclaseI ± quartz residuum, with an increase in the modal amountof garnet with increasing pressure. The results show that itis not possible to generate hornblende in such compositionswithout the addition of at least 2–4 wt % H2O. This reflectsthe fact that conditions of low aH2O may prevent hornblendefrom being produced with peraluminous granitic liquids fromthe melting of biotite gneiss. Thus growth of hornblende inanatectic BPQ gneisses is an indication of addition of externalH2O-rich fluids during the partial melting event. KEY WORDS: biotite; dehydration; gneisses; hornblende; melt  相似文献   

20.
GANNE  J.; BUSSY  F.; VIDAL  O. 《Journal of Petrology》2003,44(7):1281-1308
Three types of garnet have been distinguished in pelitic schistsfrom an epidote–blueschist-facies unit of the Ambin andSouth Vanoise Briançonnais massifs on the basis of texture,chemical zoning and mineral inclusion characterization. Type-1garnet cores with high Mn/Ca ratios are interpreted as pre-Alpinerelicts, whereas Type-1 garnet rims, Type-2 inclusion-rich porphyroblastsand smaller Type-3 garnets are Alpine. The latter are all characterizedby low Mn/Ca ratios and a coexisting mineral assemblage of blueamphibole, high-Si phengite, epidote and quartz. Prograde growthconditions during Alpine D1 high-pressure (HP) metamorphismare recorded by a decrease in Mn and increase in Fe (±Ca)in the Type-2 garnets, culminating in peak PT conditionsof 14–16 kbar and 500°C in the deepest parts of theAmbin dome. The multistage growth history of Type-1 garnetsindicates a polymetamorphic history for the Ambin and SouthVanoise massifs; unfortunately, no age constraints are available.The new metamorphic constraints on the Alpine event in the massifsdefine a metamorphic T ‘gap’ between them and theirsurrounding cover (Briançonnais and upper Schistes Lustrésunits), which experienced metamorphism only in the stabilityfield of carpholite–lawsonite (T < 400°C). Thesedata and supporting structural studies confirm that the Ambinand South Vanoise massifs are slices of ‘eclogitized’continental crust tectonically extruded within the SchistesLustrés units and Briançonnais covers. The correspondingtectonic contacts with top-to-east movement are responsiblefor the juxtaposition of lower-grade metamorphic units on theAmbin and South Vanoise massifs. KEY WORDS: Alpine HP metamorphism; Ambin and South Vanoise Briançonnais basements; metamorphic gaps; multistage garnets; Western Alps  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号