首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Systematic seasonal variations of suspended particulate matter (SPM) along a 44-km transect of the Mandovi estuary reveal that the concentrations of SPM are low at river-end stations, increase generally seaward, and are highest at sea-end stations of the estuary. An estuarine turbidity maximum (ETM) occurs at sea-end stations during June–September when river discharge is high and also in February–May when river discharge is low. These are the two windiest times of year, the former associated with the southwest monsoon and the latter characterized by a persistent sea breeze. The salinity vs. SPM plot shows that high SPM is a seaward deposit and skewed landward. Suspended matter comprised of floccules, fecal pellets, and aggregates that consist of clay and biogenic particles occur everywhere in the estuary. Diatoms are the most common and are of marine type at the sea-end and freshwater-dominated at river-end stations of the estuary. SPM is characterized by kaolinite- and smectite-rich clay mineral suites at the river- and sea-end stations, respectively. Smectite concentrations increase seawards with the increase in SPM content and are not influenced by salinity. Wind-driven waves and currents and biogeochemical processes at the mouth of estuary likely play an important role in the formation of ETM in resuspension and transformation of SPM into floccules and aggregates and in their upkeep or removal.  相似文献   

2.
We examined microbial processes and the distribution of particulate materials in the estuarine turbidity maximum (ETM, salinity 2–10 PSS) of northern San Francisco Bay on three cruises during the late spring of 1994 (low flow: April 19, April 28, May 17) and two cruises during the early summer of 1995 (high flow; June 13, July 18). Under low flow conditions, chlorophyll concentrations decreased by a factor of 2–4, bacterial abundance decreased by 20%, and L-leucine incorporation rate decreased by a factor of about 2 over a salinity range of 0–2 PSS, then remained relatively constant at higher salinities. Over this same salinity range under high flow conditions, chlorophyll concentration was c. twofold lower, bacterial abundance was c. threefold higher, and L-leucine incorporation rate was in the same range as during low flow. Under high flow conditions, chlorophyll concentration increased by 20%., bacterial abundance decreased by a factor of 2, and L-leucine incorporation rate decreased by half (June 13) or remained unchanged (July 19) with increasing salinity. Under low flow conditions the concentration of suspended particulate material (SPM), particulate organic carbon (POC), and particulate organic nitrogen (PON) increased 3–10 fold with salinity, to a maximum at intermediate salinities (c. 6 PSS). As a result, the contribution of phytoplankton to POC decreased from a maximum of 32% in fresh water to c. 6% in the ETM. The contribution of bacterial biomass similarly decreased from 5% in fresh water to 0.8% in the ETM. The C:N ratio of particulate material increased from <10 in fresh water to >12 in the ETM. High variability in abundance estimates confounded analysis of patterns in bacterial biomass partitioning between particle-associated and free-living fractions along the salinity gradient. However, the partitioning of L-leucine incorporation shifted dramatically from being predominantly by free-living cells in fresh water to being predominantly by particleassociated populations in the ETM. The metabolic fate of thymidine taken up differed, between particle-associated and free-living bacteria, suggesting some metabolic divergence of these assemblages.  相似文献   

3.
On different time scales of suspended matter dynamics in the Weser estuary   总被引:1,自引:0,他引:1  
Long-term observations in the Weser estuary (Germany) between 1983 and 1997 provide insight into the response of the estuarine turbidity maximum (ETM) under a wide range of conditions. In this estuary the turbidity zone is closely tied to the mixing zone, and the positions of the ETM and the mixing zone vary with runoff. The intratidal suspended particulate matter (SPM) concentrations vary due to deposition during slack water periods, subsequent resubsequent and depletion of temporarily-formed and spatially-limited deposits during the following ebb or flood, and subsequent transport by tidal currents. The corresponding time history of SPM concentrations is remarkably constant over the years. Spring tide SPM concentrations can be twice the neap tide concentrations or even larger. A hysteresis in SPM levels between the falling and rising spring-neap cycle is attributed to enhanced resuspension by the stronger spring tidal currents. There is evidence that the ETM is pushed up-estuary during times of higher mean water levels due to storms. During river floods the ETM is flushed towards the outer estuary. If river floods and their decreasing parts occur during times of relatively high mean water levels, the ETM seems to be maintained in the outer estuary. If river floods and their decreasing parts occur during times of relatively low mean water levels, the ETM seems to loose inventory and may need up to half a year of non-event conditions to gain its former magnitude. During this time seasonal effects may be involved. Analyses of storm events and river floods have revealed that the conditions in the seaward boundary region play an equally important role for the SPM dynamics as those arising from the river.  相似文献   

4.
Estuarine salinity distributions reflect a dynamic balance between the processes that control estuarine circulation. At seasonal and longer time scales, freshwater inputs into estuaries represent the primary control on salinity distribution and estuarine circulation. El Niño-Southern Oscillation (ENSO) conditions influence seasonal rainfall and stream discharge patterns in the Tampa Bay, Florida region. The resulting variability in freshwater input to Tampa Bay influences its seasonal salinity distribution. During El Niño events, ENSO sea surface temperature anomalies (SSTAs) are significantly and inversely correlated with salinity in the bay during winter and spring. These patterns reflect the elevated rainfall over the drainage basin and the resulting elevated stream discharge and runoff, which depress salinity levels. Spatially, the correlations are strongest at the head of the bay, especially in bay sections with long residence times. During La Niña conditions, significant inverse correlations between ENSO SSTAs and salinity occur during spring. Dry conditions and depressed stream discharge characterize La Niña winters and springs, and the higher salinity levels during La Niña springs reflect the lower freshwater input levels.  相似文献   

5.
Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1–5.6ms−1) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2–3.7ms−1) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition  相似文献   

6.
The Delaware Estuary has a history of high anthropogenic nutrient loadings but has been classified as a high-nutrient, low-growth system due to persistent light limitation caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries have been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study describes the impact of spatiotemporal variability of the estuarine turbidity maximum (ETM) on light-limited productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to evaluate the impact of the turbidity maximum on production. Whereas the movement of the ETM is controlled primarily by river discharge, the structure of the ETM is modulated by stratification, which varies with both river discharge and spring-neap conditions. We observe that the ETM’s location and structure control spatial patterns of light availability. To evaluate the relative contributions of river discharge and spring-neap variability to the location of phytoplankton blooms, we develop an idealized two-dimensional Regional Ocean Modeling System (ROMS) numerical model. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary production. This study sheds light on the role of stratification in controlling sediment resuspension and promoting production, highlighting the potential limitations of biogeochemical models that neglect sediment processes.  相似文献   

7.
Salinities occupied by different life stages of bay anchovy (Anchoa mitchilli) were compared over annual cycles at 128 stations in 12 Florida estuaries. The comparison included eight stations in an oligotrophic, groundwater-based estuary in which all life stages were rare or absent. At other stations, adults, eggs, and early larvae occurred in intermediate to high salinities (10-30 psu) with no apparent central salinity tendency. The larva-juvenile transition was marked by an upstream shift to lower salinities (0-15 psu), also with no central salinity tendency. Mean salinities of the juvenile catch were strongly dependent on the salinities of the sampling effort. This dependence was strongest in estuaries that had weak horizontal salinity gradients. Weak salinity gradients were either natural or resulted from estuarine dams. After using nonlinear regression to account for the interaction between effort salinity and catch salinity, catch salinities were found to be similar from year to year within estuaries, but widely different among estuaries, with interestuarine differences ranging as high as 10–13 psu. Lower salinities were occupied by juveniles in estuaries that had long freshwater turnover times. Inherent geomorphic and inflow-related effects on the distribution of prey resources, coupled with an ontogenetic diet shift, are proposed as the explanation for both the habitat shift and the strong interestuarine variability in salinity at capture.  相似文献   

8.
The differences and similarities between near-pristine estuaries of different latitudinal regions were examined by selecting three tropical systems from North Queensland, Australia (Jardine, Annan, Daintree) and three temperate systems from Scotland, United Kingdom (Inverness, Cromarty, Dornoch Firths) for comparison. Although estuaries from the different regions have a number of unifying features, such as salinity gradients, tidal variations and terrestrial inputs they also have a number of important differences. The most distinct of these is the timing and variability of the major physical forcings on the estuary (e.g., river flow, insolation). The three tropical estuaries were much more episodic than their temperate counterparts, with a much more dynamic salinity structure and more variable riverwater concentrations, so that delivery of material to the estuary is dominated by short-lived flood events. In contrast, seawater concentrations were more stable in the tropical estuaries due to a more constant input of insolation, resulting in year round biological activity. There was biological removal of dissolved inorganic phosphorus in the low salinity region of the tropical Jardine and Daintree estuaries and a low salinity input of nitrate in the tropical Annan estuary most likely due to nitrification in the bottom sediments, and the biological reaction zone in the tropical Annan Estuary was flushed out of the estuarine basin to the edge of the offshore plume during a flood. Similar effects were not seen in the temperate Inverness, Cromarty, and Dornoch Firths. Similarities between estuaries include mid-estuary inputs of ammonium which were seen in both the temperate and tropical estuaries, although they occur under vastly contrasting conditions of low river discharge and periods of flood, respectively. Five of the estuaries show a general increase in dissolved inorganic phosphorus concentrations towards the sea during low flows, reflecting their pristine condition, and all six estuaries had low salinity silicate maxima probably sourced from the dissolution of freshwater biogenic silicate that has been carried seaward, except in the tropical estuaries during the dry season when a benthic source is proposed.  相似文献   

9.
Two estuaries with very different inflow characteristics were compared to test the hypothesis that benthic standing crops are enhanced by freshwater inflow. Assuming predation pressure is similar in both estuaries, this would imply that freshwater inflow enhances secondary production. The Guadalupe Estuary had 79 times more freshwater inflow than the Nueces Estuary, and a third of the salinity. The Guadalupe had higher macrofaunal densities and biomass than the Nueces, and both parameters increased with decreasing salinity within the Guadalupe Estuary. Macrofauna density increased with increasing salinity in the Nueces Estuary, due to invasion by marine species. However, meiofauna population size responds differently than macrofauna. Meiofaunal densities were higher in the low-inflow Nueces Estuary, and increased with increasing salinity in both estuaries. Macrofauna diversity increased with salinity, both within and between estuaries. The macrofauna response supports the hypothesis that increased freshwater inflow stimulates secondary production. A review of past benthic studies in these estuaries and the historical climatic patterns indicate that wet years with high inflow result in increased macrofaunal productivity. Since, macrofaunal diversity decreased with lower salinity both within and between the estuaries, the enhanced productivity is due to increases by freshwater and estuarine species that can tolerate low salinities. Increased macrofaunal densities are associated with decreasing meiofaunal densities. The latter result could be due to either increased macrofaunal competition with or predation on meiofauna, or a lack of low-salinity tolerance by meiofauna.  相似文献   

10.
Particle trapping in stratified estuaries: Application to observations   总被引:1,自引:0,他引:1  
Estuarine turbidity maxima (ETM) retain suspended particulate matter (SPM) through advection, settling, aggregation, and nonlinearities in bed processes, but the relative importance of these processes varies strongly between systems. Observations from two strongly advective systems (the Columbia and Fraser Rivers) are used to investigate seasonal cycles of SPM retention and the effects of very high flows. Results for the Fraser and Columbia plus literature values for 13 other estuaries illustrate the applicability of scaling parameters and the response of ETM phenomena to a range of river flow (U r ) levels and tidal forcing. The most efficient trapping (represented by Trapping EfficiencyE, the ratio of maximum ETM concentration to the source SPM concentration) occurs for low ratios of river flow to tidal current amplitude (UT), represented by low values of the Supply number Sr.E in the Columbia is found to be maximal in a null zone where advection or tidal asymmetry (represented by Advection numberA) is weak(A ∼ 0). The ratio of aggregation to disaggregation (the Floc number Θ) is maximal on neap tides, while the ratio of erosion to deposition (the Erosion number P) is maximal on spring tides. The ratio of settling velocity to vertical mixing (Rouse numberP) is relatively constant in the Columbia ETM(P ∼ 0.7), because particle settling velocity and turbulence levels adjust together. Assuming that this result applies broadly, scaling variables and data are combined to express ETM properties in terms of the friction velocity (U*),U r , andU T , allowing a considerable simplification of the parameters used to describe ETM.  相似文献   

11.
The uptake and release of trace metals (Cu, Ni, Zn, Cd, and Co) in estuaries are studied using river and sea end-member waters and suspended particulate matter (SPM) collected from the Changjiang Estuary, China. The kinetics of adsorption and desorption were studied in terms of environmental factors (pH, SPM loading, and salinity) and metal concentrations. The uptake of the metals studied onto SPM occurred mostly within 10 h and reached an asymptotic value within 40 h in the Changjiang Estuary. As low pH river water flows into the high pH seawater and the water become more alkaline as it approaches to the seaside of estuary, metals adsorb more on SPM in higher pH water, thus, particulate phase transport of metal become increasingly important in the seaward side of the estuary. The percentage of adsorption recovery and the distribution coefficients for trace metals remained to be relatively invariable and a significant reduction only occurred in very high concentrations of metals (>0.1 mg L−1). The general effect of salinity on metal behavior was to decrease the degree of adsorption of Cu, Zn, Cd, Co, and Ni onto SPM but to increase their adsorption equilibrium pH. The adsorption–desorption kinetics of trace metals were further investigated using Kurbatov adsorption model. The model appears to be most useful for the metals showing the conservative behavior during mixing of river and seawater in the estuary. Our work demonstrates that dissolved concentration of trace metals in estuary can be modeled based on the metal concentration in SPM, pH and salinity using a Kurbatov adsorption model assuming the natural SPM as a simple surfaced molecule.  相似文献   

12.
Salinity is a critical factor in understanding and predicting physical and biogeochemical processes in the coastal ocean where it varies considerably in time and space. In this paper, we introduce a Chesapeake Bay community implementation of the Regional Ocean Modeling System (ChesROMS) and use it to investigate the interannual variability of salinity in Chesapeake Bay. The ChesROMS implementation was evaluated by quantitatively comparing the model solutions with the observed variations in the Bay for a 15-year period (1991 to 2005). Temperature fields were most consistently well predicted, with a correlation of 0.99 and a root mean square error (RMSE) of 1.5°C for the period, with modeled salinity following closely with a correlation of 0.94 and RMSE of 2.5. Variability of salinity anomalies from climatology based on modeled salinity was examined using empirical orthogonal function analysis, which indicates the salinity distribution in the Bay is principally driven by river forcing. Wind forcing and tidal mixing were also important factors in determining the salinity stratification in the water column, especially during low flow conditions. The fairly strong correlation between river discharge anomaly in this region and the Pacific Decadal Oscillation suggests that the long-term salinity variability in the Bay is affected by large-scale climate patterns. The detailed analyses of the role and importance of different forcing, including river runoff, atmospheric fluxes, and open ocean boundary conditions, are discussed in the context of the observed and modeled interannual variability.  相似文献   

13.
14.
Nitrogen (N) is one of the primary nutrients required to build biomass and is therefore in high demand in aquatic ecosystems. Estuaries, however, are frequently inundated with high concentrations of anthropogenic nitrogen, which can lead to substantially degraded water quality. Understanding drivers of biogeochemical N cycling rates and the microbial communities responsible for these processes is critical for understanding how estuaries are responding to human development. Estuaries are notoriously complex ecosystems: not only do individual estuaries by definition encompass gradients of salinity and other changing environmental conditions, but differences in physical parameters (e.g., bathymetry, hydrodynamics, tidal flushing) lead to a tremendous amount of variability in estuarine processes between ecosystems, as well. Here, we review the current knowledge of N cycling processes in estuaries carried out by bacteria and archaea, including both biogeochemical rate measurements and molecular characterizations of N cycling microbial communities. Particular attention is focused on identifying key environmental factors associated with distinct biogeochemical or microbial regimes across numerous estuaries. Additionally, we describe novel metabolisms or organisms that have recently been discovered but have not yet been fully explored in estuaries to date. While the majority of research has been conducted in the benthos, we also describe data from estuarine water columns. Understanding both the common patterns and the differences between estuaries has important implications for how these critical ecosystems respond to changing environmental conditions.  相似文献   

15.
Estuarine turbidity maxima (ETM) play an important role in zooplankton and larval fish productivity in many estuaries. Yet in many of these systems, little is known about the food web that supports this secondary production. To see if phytoplankton have the potential to be a component of the ETM food web in the Chesapeake Bay estuary a series of cruises were carried out to determine the biomass distribution and floral composition of phytoplankton in and around the ETM during the winter and spring using fluorometry, high-performance liquid chromatography (HPLC), and microscopy. Two distinct phytoplankton communities were observed along the salinity gradient. In lower salinity waters, biomass was low and the community was composed mostly of diatoms, while in more saline waters biomass was high and the community was composed mostly of mixotrophic dinoflagellates, which were often concentrated in a thin layer below the pycnocline. Phytoplankton biomass was always low in the ETM, but high concentrations of phytoplankton pigment degradation products and cellular remains were often observed suggesting that this was an area of high phytoplankton mortality and/or an area where phytoplankton derived particulate organic matter was being trapped. These results, along with a box model analysis, suggest that under certain hydrodynamic conditions phytoplankton derived organic matter can be trapped in ETM and potentially play a role in fueling secondary production.  相似文献   

16.
Freshwater flow is the principal cause of physical variability in estuaries and a focus of conflict in estuaries where a substantial fraction of the freshwater is diverted. Variation in freshwater flow can have many effects: inundation of flood plains, increase loading and advective transport of materials and organisms, dilution or mobilization of contaminants, compression of the estuarine salinity field and density gradient, increase in stratification, and decrease in residence time for water while increasing it for some particles and biota. In the San Francisco Estuary, freshwater flow is highly variable, and has been altered by shifts in seasonal patterns of river flow and increases in diversions from tidal and nontidal regions, entraining fish of several species of concern. Abundance or survival of several estuarine-dependent species also increases with freshwater outflow. These relationships to flow may be due to several potential mechanisms, each with its own locus and period of effectiveness, but no mechanism has been conclusively shown to underlie the flow relationship of any species. Several flow-based management actions were established in the mid-1990s, including a salinity standard based on these flow effects, as well as reductions in diversion pumping during critical periods for listed species of fish. The effectiveness of these actions has not been established. To make the salinity standard more effective and more applicable to future estuarine conditions will require investigation to determine the underlying mechanisms. Effects of entrainment at diversion facilities are more straightforward conceptually but difficult to quatify, and resolving these may require experimental manipulations of diversion flow.  相似文献   

17.
Freshwater inflow is a driver of the functioning of estuaries, and average salinity is usually measured to identify the effects of inflow in salinity-zone habitats. However, salinity variability could act as a disturbance by producing unstable habitats, leading to the question: is salinity variance an indicator of benthic disturbance, and therefore a driver of community stability? The macrofauna communities of five estuaries that lie in a climatic gradient on the Texas coastline were analyzed using a 26-year data set. Comparisons within and between estuaries with different inflow regimes were used as a natural experiment to simulate press disturbance events (i.e., climatic inflow) and pulse disturbance (i.e., floods) in maintaining community stability. Salinity average and variance was compared with benthic community diversity, evenness, and species richness. Salinity variance was more correlated to benthic diversity for each estuarine system (r?=??0.6610; p?=?0.0015) than average salinity (r?=?0.3818; p?=?0.0967). As salinity variance decreased (i.e., stability increased), diversity levels of benthic communities increased, and areas with mgore freshwater inflow displayed lower levels of benthic diversity. These findings advance a component of the general theory of diversity maintenance that persistent stressors, such as salinity variability, can influence diversity.  相似文献   

18.
We investigated seasonal and tidal-monthly, suspended particulate matter (SPM) dynamics in the Columbia River estuary from May to December 1997 using acoustic backscatter (ABS) and velocity data from four long-term Acoustic Doppler Profiler (ADP) moorings in or near the estuarine turbidity maximum (ETM). ABS profiles were calibrated and converted to total SPM profiles using pumped SPM samples and optical backscatter (OBS) data obtained during three seasonal cruises. Four characteristic settling velocity (W s) classes were defined from Owen Tube samples collected during the cruises. An inverse analysis, in the form of a non-negative least squares minimization, was used to determine the contribution of the four,W s-classes to each, total SPM profile. The outputs from the inverse analyses were 6–8 mo time-series ofW s-specific SPM concentration and transport profiles at each mooring. The profiles extended from the free surface to 1.8–2.7 m from the bed, with 0.25–0.50 m resolution. These time series, along with Owen Tube results and disaggregated size data, were used to investigate SPM dynamics. Three non-dimensional parameters were defined to investigate how river flow and tidal forcing affect particle trapping: Rouse numberP (balance between vertical mixing and settling) trapping efficiencyE (ratio of maximum SPM concentration in the estuary to fluvial source concentration), and advection numberA (ratio of height of maximum SPM concentration to friction velocity). The most effective particle trapping (maximum values ofE) occurs on low-flow neap tides. The location of the ETM and the maximal trapping migrated seasonally in a manner consistent with the increase in salinity intrusion length after the spring freshet. Maximum advection (high values ofA) occurred during highly stratified neap tides.  相似文献   

19.
A series of cruises was carried out in the estuarine turbidity maximum (ETM) region of Chesapeake Bay in 1996 to examine physical and biological variability and dynamics. A large flood event in late January shifted the salinity structure of the upper Bay towards that of a salt wedge, but most of the massive sediment load delivered by the Susquehanna River appeared to bypass the ETM zone. In contrast, suspended sediments delivered during a flood event in late October were trapped very efficiently in the ETM. The difference in sediment trapping appeared to be due to increases in particle settling speed from January to October, suggesting that the fate of sediments delivered during large events may depend on the season in which they occur. The ETM roughly tracked the limit of salt (defined as the intersection of the 1 psu isohaline with the bottom) throughout the year, but it was often separated significantly from the limit of salt with the direction of separation unrelated to the phase of the tide. This was due to a lag of ETM sediment resuspension and transport behind rapid meteorologically induced or river flow induced motion of the salt limit. Examination of detailed time series of salt, suspended sediment, and velocity collected near the limit of salt, combined with other indications, led to the conclusion that the convergence of the estuarine circulation at the limit of salt is not the primary mechanism of particle trapping in the Chesapeake Bay ETM. This convergence and its associated salinity structure contribute to strong tidal asymmetries in sediment resuspension and transport that collect and maintain a resuspendable pool of rapidly settling particles near the salt limit. Without tidal resuspension and transport, the ETM would either not exist or be greatly weakened. In spite of this repeated resuspension, sedimentation is the ultimate fate of most terrigenous material delivered to the Chesapeake Bay ETM. Sedimentation rates in the ETM channel are at least an order of magnitude greater than on the adjacent shoals, probably due to focusing mechanisms that are poorly understood.  相似文献   

20.
The spatial variability of the quality of the soil on the shores of a lagoon affected by hydromorphy and/or salinity can be identified (Laguna de Villacañas, Castilla La Mancha) by the use of multitemporal Landsat images in order to analyse these changes. For this purpose, TM and ETM images along with field observations and certain edaphic laboratory parameters are used. In order to identify saline-hydromorphic soils, the spatial variability of chemical and physical properties of a transect, which includes from Solonchaks to Regosols and Cambisols, have been correlated with the Normalised Difference Vegetation Index (NDVI). This index, chosen for specific dates, has proven to be very useful in detecting halophytic vegetation and relating it to the variability of the quality of these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号