首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In 2013, a great breakthrough of deep petroleum exploration was achieved in the Cambrian pre-salt intervals of Wells Zhongshen1 (ZS1) and Zhongshen1C (ZS1C), Tazhong Uplift. However, the hydrocarbon discovery in the Cambrian pre-salt intervals has triggered extensive controversy regarding the source of marine oils in the Tarim Basin. The geochemistry and origin of the Cambrian pre-salt hydrocarbons in Wells ZS1 and ZS1C were investigated using GC, GC-MS and stable carbon isotope technique. These hydrocarbons can be easily distinguished into two genetic families based on their geochemical and carbon isotopic compositions. The oil and natural gases from the Awatage Formation of Well ZS1 are derived from Middle- Upper Ordovician source rocks. In contrast, the condensate and gases from the Xiaoerbulake Formation of Wells ZS1 and ZS1C probably originate from Cambrian source rocks. The recent discovery of these hydrocarbons with two different sources in Wells ZS1 and ZS1C suggests that both Middle-Upper Ordovician-sourced hydrocarbons and Cambrian-sourced petroleums are accumulated in the Tazhong Uplift, presenting a great exploration potential.  相似文献   

2.
With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.  相似文献   

3.

With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.

  相似文献   

4.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of individual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional environment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13 C distribution. The 13 C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1‰ for subgroups and 14‰ for individual compounds. It can provide strong evidence for oil source correlation by combing the 13 C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative 13C9-MP value, poor gammacerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 13C9-MP value, abundant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.  相似文献   

5.
Since the discovery of the Tahe oilfield, it has been controversial on whether the main source rock is in the Cambrian or Middle-Upper Ordovician strata. In this paper, it is assumed that the crude oil from the Wells YM 2 and TD 2 was derived from the Middle-Upper Ordovician and Cambrian source rocks, respectively. We analyzed the biomarkers of the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions from the Lunnan and Hade areas in the North Uplift of the Tarim Basin. Results show that the ratios of tricyclic terpane C21/C23 in the crude oil, asphalt-adsorbed hydrocarbon and saturated hydrocarbon in bitumen inclusions are less than 1.0, indicating that they might be from Upper Ordovician source rocks; the ratios of C28/(C27+C28+C29) steranes in the saturated hydrocarbon from reservoir bitumen and bitumen inclusions are higher than 25, suggesting that they might come from the Cambrian source rocks, however, the ratios of C28/(C27+C28+C29) steranes in oil from the North Uplift are less than 25, suggesting that they might be sourced from the Upper Ordovician source rocks. These findings demonstrate that the sources of crude oil in the Tarim Basin are complicated. The chemical composition and carbon isotopes of Ordovician reservoired oil in the Tarim Basin indicated that the crude oil in the North Uplift (including the Tahe oilfield) and Tazhong Depression was within mixture areas of crude oil from the Wells YM 2 and TD 2 as the end members of the Cambrian and Middle-Upper Ordovician sourced oils, respectively. This observation suggests that the crude oil in the Ordovician strata is a mixture of oils from the Cambrian and Ordovician source rocks, with increasing contribution from the Cambrian source rocks from the southern slope of the North Uplift to northern slope of the Central Uplift of the Tarim Basin. Considering the lithology and sedimentary facies data, the spatial distribution of the Cambrian, Middle-Lower Ordovician and Upper Ordovician source rocks was reconstructed on the basis of seismic reflection characteristics, and high-quality source rocks were revealed to be mainly located in the slope belt of the basin and were longitudinally developed over the maximum flooding surface during the progressive-regressive cycle. Affected by the transformation of the tectonic framework in the basin, the overlays of source rocks in different regions are different and the distribution of oil and gas was determined by the initial basin sedimentary structure and later reformation process. The northern slope of the Central Uplift-Shuntuo-Gucheng areas would be a recent important target for oil and gas exploration, since they have been near the slope area for a long time.  相似文献   

6.
The crude oils typically from the CambrianLower Ordovician source rocks of Tarim Basin, NW"China, such as TD2 and TZ62S, are13C-enriched with the stable carbon isotopic ratios(VPDB) approaching-28 %.In this paper, the main research viewpoints on this issue are summarized, and combined with results from organic and inorganic carbon isotope stratum curves of the outcrop at the Ya'erdang Mountain in Tarim Basin. In addition, more alternative interpretations are discussed. On one hand, the inverse fractionation features of stable carbon and hydrogen isotopes of these crude oils may imply their protogenous nature. On the other hand, the anisotropy of source rocks and contribution from older stratum source rocks need verifying as well. For the sake of the final resolution of this issue, some further study topics are recommended.  相似文献   

7.
Frost CD  Toner RN 《Ground water》2004,42(3):418-432
87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.  相似文献   

8.
塔里木盆地奥陶系碳酸盐岩储层是近年来油气勘探的热点.然而,由于碳酸盐岩地层缺乏有效的古温标,极大的制约了热历史的研究.团簇同位素作为一种新的有效古温标,为碳酸盐岩地层的热历史恢复提供了可能.本文通过测试塔里木盆地顺托果勒地区奥陶系碳酸盐岩储层中不同结构组分的团簇同位素,利用固态重排模型重建了塔里木盆地顺托果勒地区不同构造单元的奥陶纪以来的热历史.塔里木盆地顺北、顺托和顺南地区泥晶基质的团簇同位素温度(TΔ47)平均值分别为92.34℃、124.35℃和170.27℃,除了顺南地区SN501井和SN4井外,其他的所有样品在最高埋藏温度下尚未达到完全热平衡,可用于热历史重建.通过对顺托果勒地区典型单井设置不同的热史路径,进而明确最高埋藏温度的上限为170~190℃.此外,二叠纪的异常高温可能是地层抬升剥蚀和岩浆活动热事件共同作用的结果,顺托果勒地区二叠纪地温梯度范围为26~46℃/km,呈现西北高东南低的趋势,地温梯度的空间变化表明可能与岩浆活动有关,且岩浆活动中心可能位于塔北地区附近,岩浆活动造成热响应可能在SN3井附近终止.  相似文献   

9.

Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.

  相似文献   

10.
Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

11.
Well Yingnan 2,an important exploratory well in the east of Tarim Basin,yields high commercial oil and gas flow in Jurassic.Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas.Because this region presents many suits of hydrocarbon source rocks,there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present.By using the kinetics of hydrocarbon generation and carbon isotope,natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas,about 72%,it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir.The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2,so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

12.
Although 1-alkyl-2,3,6-trimethylbenzenes and a high relative amount of 1,2,3,4-tetramethylbenzene have been detected in marine oils and oil asphaltenes from Tabei uplift in the Tarim Basin, their bio-logical sources are not determined. This paper deals with the molecular characteristics of typical ma-rine oil asphaltenes from Tabei and Tazhong uplift in the Tarim Basin and the stable carbon isotopic signatures of individual compounds in the pyrolysates of these asphaltenes using flash pyrolysis-gas chromatograph-mass spectrometer (PY-GC-MS) and gas chromatograph-stable isotope ratio mass spectrometer (GC-C-IRMS), respectively. Relatively abundant 1,2,3,4-tetramethylbenzene is detected in the pyrolysates of these marine oil asphaltenes from the Tarim Basin. δ 13C values of 1,2,3,4-tetrame-thylbenzene in the pyrolysates of oil asphaltenes vary from-19.6‰ to-24.0‰, while those of n-alkanes in the pyrolysates show a range from-33.2‰ to-35.1‰. The 1,2,3,4-tetramethylbenzene in the pyro-lysates of oil asphaltenes proves to be significantly enriched in 13C relative to n-alkanes in the pyro-lysates and oil asphaltenes by 10.8‰―15.2‰ and 8.4‰―13.4‰, respectively. This result indicates a contribution from photosynthetic green sulfur bacteria Chlorobiaceae to relatively abundant 1,2,3,4-tetramethylbenzene in marine oil asphaltenes from the Tarim Basin. Hence, it can be speculated that the source of most marine oil asphaltenes from the Tarim Basin was formed in a strongly reducing water body enriched in H2S under euxinic conditions.  相似文献   

13.
北京地区部分碳酸盐糜棱岩和碳酸盐假熔岩碳氧同位素组成的测试结果表明,碳酸盐岩在发生塑性变形时其δ13C、δ18O值均有不同程度的降低。同位素证据表明,碳酸盐糜棱岩的形成温度较低,并具有缓慢冷却的生成环境;碳酸盐假熔岩具有高温淬冷的同位素地球化学特征,它的形成可能与发震断层的迅速破裂过程有关。研究断层面附近产出的碳酸盐岩的稳定同位素组成对确认古地震事件是有意义的  相似文献   

14.
Most of the carbonates in the Tarim Basin in northwest China are low-porosity and low-permeability rocks. Owing to the complexity of porosity in carbonates, conventional rockphysics models do not describe the relation between velocity and porosity for the Tarim Basin carbonates well. We propose the porous-grain-upper-boundary (PGU) model for estimating the relation between velocity and porosity for low-porosity carbonates. In this model, the carbonate sediments are treated as packed media of porous elastic grains, and the carbonate pores are divided into isolated and connected pores The PGU model is modified from the porous-grain-stiff-sand (PGST) model by replacing the critical porosity with the more practical isolated porosity. In the implementation, the effective elastic constants of the porous grains are calculated by using the differential effective medium (DEM) model. Then, the elastic constants of connected porous grains in dry rocks are calculated by using the modified upper Hashin-Shtrikman bound. The application to the Tarim carbonates shows that relative to other conventional effective medium models the PGU model matches the well log data well.  相似文献   

15.
The quality of the Ordovician carbonate reservoir beds in the Tarim Basin is closely related to the development of secondary pores,fractures and cavities. Karstification is important in improving the properties of reservoir beds,and karstification related to unconformity has caught wide attention. Compared with the recent research on the unconformity karst reservoir bed improvement,this paper shows a new way of carbonate reservoir bed transformation. Based on field survey,core and slices observation,transformation of Ordovician carbonate reservoir beds by faulting can be classified into three types: (1) Secondary faults and fracturs generated by faulting improved carbonate reservoir bed properties,which were named the Lunnan or Tazhong82 model; (2) upflow of deep geothermal fluids caused by faulting,with some components metasomatizing with carbonate and forming some secon-dary deposit,such as fluorite. It can improve carbonate reservoir bed properties obviously and is named the Tazhong 82 model; and (3) the faulting extending up to the surface increased the depth of supergene karstification and the thickness of reservoir bed. It is named the Hetianhe model. Trans-formation effect of carbonate reservoir beds by faulting was very significant,mainly distributed on the slopes or on the edge or plunging end of the uplift.  相似文献   

16.
Kerogen is the organic matter in sediments that isneither soluble in common organic solvents nor in hy-drous alkaline solvents[1]. It is the most important or-ganic matter on the earth and regarded as the majorsource of natural gas and petroleum. Being the mac-romolecule, kerogen is not readily to be contaminatedby other organic matter. It is the most reliable indige-nous organic matter in sediments[2]. The structure of kerogen is one of the key sub-jects of organic geochemical studies in…  相似文献   

17.
Review of the literature on Ordovician conodont diversification in palaeoplates of North and Western China reveals that four diversity peaks are present in North China, occurring in the middle Tremadocian, early Floian, late Floian, and late Darriwilian, with three of these peaks (excepting that in the late Floian) also being recorded in Tarim. Three diversification intervals are present in North China, during the Tremadocian, late Floian, early and middle Darriwilian; comparable intervals are observed in the early and late Tremadocian, early Floian, and the Middle Ordovician in Tarim. The main conodont diversification episode in both palaeoplates took place in the Darriwilian, at the time of the Great Ordovician Biodiversification Event. A comparison of conodont diversity patterns in different palaeoplates (North China, Tarim, and South China) demonstrates that conodont radiation events mainly occurred within the Tremadocian, Floian, and Darriwilian. Conodont diversifications in these paleoplates also display some differences. In contrasting with Tarim and South China, North China witnessed a rapid conodont diversification during late Floian time. Conodont diversity in North China and Tarim increased continually and reached a peak in the late Darriwilian, concurrent with a prominent decreasing trend in South China. Differences of conodont diversification in these three palaeoplates may be related to their palaeogeography and tectonic history. When conodont diversifications in North China and Tarim are analysed on the background of palaeoenvironments, the main episodes are seen to be partly coincident with second order sea-level changes, particularly in North China. In general, conodont radiation correlates with large scale transgressions.  相似文献   

18.
19.
塔里木盆地轮南奥陶系风化壳SYT法物性探测试验研究   总被引:3,自引:0,他引:3  
SYT型物性探测仪自从1992年石油系统使用之后,先后在陕北,华北,吉林,大庆油田取得了一定的试验效果,在仪器硬件和方法软件不断改进的基础上,在塔里木盆地轮南地区又进行了深为5700余米的探测试验,其界面探测精度误差为0.5%~1.2%,在地面上直接解译奥灰顶界面深度,奥灰风化壳裂隙性岩溶发育程度,判译地下油气有等方面,无疑这将会大大降低对油气勘探投资的风险系数,塔里木盆地轮南奥灰风化壳SYT法试  相似文献   

20.
The Tarim Basin is a typical superimposed basin in which there have occurred multiphase adjustment and destruction of the reservoirs. The widely distributed asphaltic sandstones of the Silurian are the very product after destruction of the reservoirs. Studies show that the Silurian asphaltic sandstones distributed in both the middle and western parts on the basin are controlled chiefly by the Caledonian oil source area and by the Tazhong, Tabei and Bachu uplifts, whereas the distribution of the asphaltic sandstones on local structural belts is controlled by the reservoir's sedimentary system. Vertically, most of the asphaltic sandstones are under the regional caprock of red mudstones and the upper sandstone section of compact lithology. Due to the difference of hydrocarbon destruction in the early stage and the influence of hydrocarbon recharge in the late stage, the asphaltic sandstones and oil-bearing sandstones in the Tazhong area can be vertically divided into the upper and lower sections and they have an interactive distribution relationship as well. Asphaltic sandstones exist not only in intergranular pores but also inside the grains of sand and between the crevices, proving the destruction of early reservoirs due to uplifting. The existence of asphaltic sandstones over a large area reveals that the large-scale migration and accumulation and the subsequent destruction of hydrocarbons in the Craton area. The destruction caused a loss of the reserve resources of the Palaeozoic amounting to nearly 13.3 billion tons. Asphaltic sandstones formed after the destruction of oil and gas may serve as an effective caprock which is beneficial to accumulation of hydrocarbons and formation of the pool sealed by asphaltic sandstones in the later stage. The destruction of the early Silurian hydrocarbons depends on the stratigraphic burial depth. The deep part under the northern slope of Tazhong is an area favorable to search of undestroyed Silurian oil reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号