首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3-D coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density-driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally averaged temperature, salinity, and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow, and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage (less than 10 %) of the total number of turbines that would generate the maximum extractable energy in the system. Model results show that extraction of tidal in-stream energy will increase the vertical mixing and decrease the stratification in the estuary. Installation of in-stream tidal farm will cause a phase lag in tidal wave, which leads to large differences in tidal currents between baseline and tidal farm conditions. Extraction of tidal energy in an estuarine system has stronger impact on the tidally averaged salinity, temperature, and velocity in the surface layer than the bottom layer even though the turbine hub height is close to the bottom. Finally, model results also indicate that extraction of tidal energy weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing is weakest and energy extraction is smallest.  相似文献   

2.
We describe the tidal circulation and salinity regime of a coastal plain estuary that connects to the ocean through a flood tide delta. The delta acts as a sill, and we examine the mechanisms through which the sill affects exchange of estuarine water with the ocean. Given enough buoyancy, the dynamics of tidal intrusion fronts across the sill and selective withdrawal (aspiration) in the deeper channel landward appear to control the exchange of seawater with estuarine water. Comparison of currents on the sill and stratification in the channel reveals aspiration depths smaller than channel depth during neap tide. During neap tide and strong vertical stratification, seawater plunges beneath the less dense estuarine water somewhere on the sill. Turbulence in the intruding bottom layer on the sill promotes entrainment of fluid from the surface layer, and the seawater along the sill bottom is diluted with estuarine water. During ebb flow, salt is effectively trapped landward of the sill in a stagnant zone between the aspiration depth and the bottom where it can be advected farther upstream by flood currents. During spring tide, the plunge point moves landward and off the sill, stratification is weakened in the deep channel, and aspiration during ebb extends to the bottom. This prevents the formation of stagnant water near the bottom, and the estuary is flooded with high salinity water far inland. The neapspring cycle of tidal intrusion fronts on flood coupled with aspiration during ebb interacts with the sill to play an important role in the transport and retention of salt within the estuary.  相似文献   

3.
Buoyancy input as fresh water exerts a stratifying influence in estuaries and adjacent coastal waters. Predicting the development and breakdown of such stratification is an inherently more difficult problem than that involved in the analogous case of stratification induced by surface heating because the buoyancy input originates at the lateral boundaries. In the approach adopted here, we have adapted the energy considerations used in the surface heating problem to describe the competition between the stabilizing effect of fresh water and the vertical mixing brought about by tidal and wind stirring. Freshwater input induces horizontal gradients which drive the estuarine circulation in which lighter fluid at the surface is moved seaward over heavier fluid moving landward below. This contribution to stratification is expected to vary in time as the level of turbulence varies over the tidal cycle. The density gradient also interacts directly with the vertical shear in the tidal current to induce a periodic input to stratification which is positive on the ebb phase of the tide. Comparison of this input with the available stirring energy leads to a simple criterion for the existence of strain-induced stratification. Observations in a region of Liverpool Bay satisfying this criterion confirm the occurrence of a strong semidiurnal variation in stratification with complete vertical mixing apparent around high water except at neap tides when more permanent stratification may develop. A simulation of the monthly cycle based on a model including straining, stirring, and the estuarine circulation is in qualitative agreement with the main features of the observations.  相似文献   

4.
Gravitational circulation of the Delaware Estuary is dominated by a single river, the Delaware River. The seasonal variation in river discharge is large. Consequently, the water column varies between vertically homogenous conditions found during most of the year and strongly stratified conditions found during the high flow of the spring freshet. Both the variation in river discharge and the extent of stratification affect chemical distributions and biological processes in the estuary. With a simple advection-diffusion model, we show that the apparent nonconservative behavior of nitrate in the Delaware Estuary can result from varying endmember concentration and varying river discharge. In addition, we illustrate the relationship between water column stratification, phytoplankton production, and concurrent bacterial activity. Finally, as an indirect chemical response to phytoplankton growth during high river discharge, we show strongly nonconservative patterns for ammonium, phosphate, and silicate in the estuary.  相似文献   

5.
The hydrography and circulation of the Chubut River were investigated under exceptionally low river discharge. The frontal zone formed by the entrance of the tide in the estuary may be observed as far as 4.5 km from the mouth, showing that the salt intrusion due to tidal effects reaches further inland than during normal river discharge. Based on the classification of Hansen and Rattray (1966), the estuary corresponds to Type 1 with some vertical stratification observed on the seaward side of the frontal zone. A lateral salinity gradient was found, which was not the result of Coriolis force. The general morphology of the estuary and the consequent secondary circulation due to meanders and interchannel bars may explain the lateral variation. Wind effect is a major component of the circulation and mixing of this shallow estuary.  相似文献   

6.
Hughes  Harris  & Hubble 《Sedimentology》1998,45(2):397-410
Bed sediment, velocity and turbidity data are presented from a large (145 km long), generally well-mixed, micro-tidal estuary in south-eastern Australia. The percentage of mud in the bed sediments reaches a maximum in a relatively narrow zone centred ≈30–40 km from the estuary mouth. Regular tidal resuspension of these bed sediments produces a turbidity maximum (TM) zone in the same location. The maximum recorded depth-averaged turbidity was 90 FTU and the maximum near-bed turbidity was 228 FTU. These values correspond to suspended particulate matter (SPM) concentrations of roughly 86 and 219 mg l?1, respectively. Neither of the two existing theories that describe the development and location of the TM zone in the extensively studied meso- and macro-tidal estuaries of northern Europe (namely, gravitational circulation and tidal asymmetry) provide a complete explanation for the location of the TM zone in the Hawkesbury River. Two important factors distinguish the Hawkesbury from these other estuaries: (1) the fresh water discharge rate and supply of sediment to the estuary head is very low for most of the time, and (2) suspension concentrations derived from tidal stirring of the bed sediments are comparatively low. The first factor means that sediment delivery to the estuary is largely restricted to short-lived, large-magnitude, fluvial flood events. During these events the estuary becomes partially mixed and it is hypothesized that the resulting gravitational circulation focuses mud deposition at the flood-determined salt intrusion limit (some 35 km seaward of the typical salt intrusion limit). The second factor means that easily entrained high concentration suspensions (or fluid muds), typical of meso- and macro-tidal estuaries, are absent. Maintenance of the TM zone during low-flow periods is due to an erosion-lag process, together with a local divergence in tidal velocity residuals, which prevent the TM zone from becoming diffused along the estuary axis.  相似文献   

7.
The Sungai Merbok estuary, in wet tropical Peninsular Malaysia, borders the Straits of Malacca. Tide, current, and salinity data are used to describe the salient hydrographic features of the mangrove-fringed system. The Sungai Merbok estuary is characterized by a 1.7 m semidiurnal tide with a 0.16 form number, peak currents of 1.3 m s?1, and mean freshwater discharge of 20 m3 s?1. The system is classified as 2a/2b estuary (Hansen and Rattray 1966) or 1a/1b during periods of low runoff. Gravitational circulation is highly variable (but coincides with the neap stratification) and vertical stratification varies from 10?2 to 1. The estuary displays a pronounced fortnightly neap-spring stratification-destratification cycle. The effective longitudinal dispersion coefficient is approximately 100 m2 s?1.  相似文献   

8.
潘明婕 《水文》2020,40(1):40-45
珠江磨刀门水道地处亚热带季风气候区,直面南海,容易受到热带风暴的袭击。选取台风"纳沙",采用SCHISM模型建立磨刀门水道三维水流盐度数值模型,通过数值试验对比,结合势能异常分析法,探究了台风期间波浪和局地风对磨刀门水道混合与层化的影响。结果显示:由于近岸及河道内水深较浅,波高整体较小,波浪对水体层化过程影响不大,对流速分布有一定的调整作用,使其分布更为均匀,并在一定程度上加强水体掺混,利于外海高浓度盐水向河口和海岸扩散。而台风期间强劲的局地风对垂向水体状态以及势能异常变化率各项均有显著作用,影响着盐淡水的层化混合过程。  相似文献   

9.
In comparison to their temperate counterparts, sediment processes in tropical estuaries are poorly known and especially in African ones. The hydrodynamics of such environments is controlled by a combination of multiple processes including morphology, salinity, mangrove vegetation, tidal processes, river discharge, settling and erosion of mud and by physico-chemical processes as well as sediment dynamics.The aim of this study is to understand the sediment processes in this transitional stage of the estuary when the balance between river discharges and marine processes is reversing. Studying the hydrodynamics and sediment dynamics of the Konkouré Estuary has recently been made possible thanks to new data on bathymetry, sedimentary cover, salinity, water elevations, and current velocities. The Lower Konkouré is a shallow, funnel shaped, mesotidal mangrove-fringed, tide-dominated estuary, well mixed during low river discharge and stratified during high river discharge. The Konkouré Estuary is turbid despite the small amount of terrestrial input and its residual velocity at the mouth during low river discharges, landwards for two of the three branches, suggests a landward migration by tidal pumping of the suspended particulate matter. A Turbidity Maximum Zone (TMZ) is identified for typical states of the estuary with regard to fluvial and tidal components. Suspended sediment transport during a transitional stage between the rainy and dry seasons is known thanks to current velocity and Suspended Sediment Concentration (SSC) measurements taken in November 2003. The Richardson layered number calculation assesses that turbulence is the major mixing process in the water column, at least during the flood and ebb stages, whereas stratification occurs during the slack water periods. Tidal currents generate bottom erosion, and turbulence mixes the suspended sediment throughout the water column. As a result, a net sediment input is calculated from the western Konkouré outlet for two consecutive tidal cycles. Despite the net water export, almost 300 tons per tide reach the estuary through this outlet, for a moderate river flow.  相似文献   

10.
回顾了国外河口锋面研究的最新成果,阐述了河口羽状锋、河口潮汐混合锋和河口切变锋的动力机制.河口羽状锋的机制研究以Garvine等人的观点最为特出.河口潮汐混合锋是由河口垂向环流中水体密度梯度所引起.河口切变锋是由滩槽流速切变引起的.  相似文献   

11.
Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s?1) and large (7080 m3 s?1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.  相似文献   

12.
现场试验表明,三角架观测系统稳定性良好,获取了边界层内多层位、连续的温、盐、流速、浊度同步观测数据,适用于浅海近底部沉积动力过程高分辨率观测及物质输运研究。观测结果显示:观测期间,边界层内存在向陆的余流,并呈现逐渐减小的趋势,其主要由涨、落潮流的不对称造成,大风天气和密度环流亦是影响余流强弱的重要因素;观测期间多数时刻底部切应力大于起动切应力,底质沉积物可产生明显的搬运甚至再悬浮;悬沙浓度对沉积动力的响应在涨、落潮,大、小潮阶段均有各自的特点,水动力的变化、潮流加/减速时间的长短、床面泥沙的供应量、上部水体泥沙的沉降是导致悬沙浓度变化的主要原因;底部边界层内,涨、落潮期间不对称输沙导致潮周期内悬沙净向河口湾内输运。  相似文献   

13.
A causeway which had restricted tidal flow in a portion of the Sheepscot River estuary was removed late in 1974. Flowmeter data from moored plankton nets fished over full tidal cycles, and salinity observations made in conjunction with the net sets, were used to evaluate the effects of causeway removal on circulation in the estuary. Tidal flows in the main channel increased by almost 50%. This increase was accompanied by substantial decreases in salinity stratification and in the strength of the gravitational circulation.  相似文献   

14.
This research investigates the dynamics of the axial tidal flow and residual circulation at the lower Guadiana Estuary, south Portugal, a narrow mesotidal estuary with low freshwater inputs. Current data were collected near the deepest part of the channel for 21 months and across the channel during two (spring and neap) tidal cycles. Results indicate that at the deep channel, depth-averaged currents are stronger and longer during the ebb at spring and during the flood at neap, resulting in opposite water transport directions at a fortnightly time scale. The net water transport across the entire channel is up-estuary at spring and down-estuary at neap, i.e., opposite to the one at the deep channel. At spring tide, when the estuary is considered to be well mixed, the observed pattern of circulation (outflow in the deep channel, inflow over the shoals) results from the combination of the Stokes transport and compensating return flow, which varies laterally with the bathymetry. At neap tide (in particular for those of lowest amplitude each month), inflows at the deep channel are consistently associated with the development of gravitational circulation. Comparisons with previous studies suggest that the baroclinic pressure gradient (rather than internal tidal asymmetries) is the main driver of the residual water transport. Our observations also indicate that the flushing out of the water accumulated up-estuary (at spring) may also produce strong unidirectional barotropic outflow across the entire channel around neap tide.  相似文献   

15.
Secondary turbidity maximum in a partially mixed microtidal estuary   总被引:2,自引:0,他引:2  
Data from a two-year period of monthly slackwater surveys reveal that in addition to the classical estuary turbidity maximum (ETM), another peak of bottom total suspended sediment (TSS) concentration, or a so-called secondary turbidity maximum (STM), often exists in the middle part of the York River estuary, Virginia. This STM, observed in most (but not all) of the slackwater surveys, moves back and forth in the region of about 20 to 40 km from the York River mouth where the mud percentage of bottom sediment is very high. The distribution of the potential energy anomaly, which was calculated using salinity data, indicates that the STM usually resides in the transition zone between the upstream well mixed and the downstream more stratified water columns. An analysis using the conservation equation of suspended sediment concentration in the water column reveals that four processes may contribute to the formation of the STM: convergence of bottom residual flow, tidal asymmetry, inhibition of turbulent diffusion by stratification, and bottom resuspension. The along-channel variations of the strength of bottom residual flow, the effect of tidal asymmetry, and the stratification patterns are probably due to the geometric features of the York River estuary.  相似文献   

16.
Rao  A. D.  Dash  Sujata  Babu  S. V. 《Natural Hazards》2004,32(2):219-237
The Mahanadi River is one of the largest river systems in the east coast of Indiaand the estuary drains and communicates with the Bay of Bengal. The seasonallyvarying fresh water river discharge and the intrusion of salt water from the baydepend on the flow associated with the semi-diurnal component of the astronomicaltide (dominated by M2 component). A numerical model has been developed tosimulate and study the salinity structure, velocity profile, flow and circulation patternand have been compared with the observed data. A reasonably good agreement isnoticed between the model simulations and the observations. The model result hasbeen utilised to compute sediment load transport to the estuary channel over a tidalcycle as well as on a monthly time scale. The sediment load transport owing to monthlyclimatological rainfall is discussed and it is inferred that a dynamic equilibrium existson a long-term over good/bad monsoons.  相似文献   

17.
To harness hydroelectric power, most of the flow of the Santee River, SC was diverted in 1942 into Charleston Harbor, where shoaling promptly became a major problem. For this reason, most of the diverted flow is scheduled to be rediverted to the Santee within the next decade, increasing the mean discharge of the Santee from 74 to 428 m3s?1. To assess the present hydrogrpahy of the Santee estuary under conditions of moderate discharge, we determined 226 vertical profiles of velocity, salinity, and temperature distributed over 17 stations in February, 1975. We found that 73 and 27% of the discharge reached the ocean via the North and South distributaries, respectively. The 1 ppt isohaline was found no further than 8 km upstream from the mouth, indicating the limited extent of the estuarine zone. The Santee is a partially mixed estuary classified as type 2b. The circulation parameter is approximately 3 and the stratification parameter approximately 0.3. The bulk parameters indicate the importance of tidal, mixing and a weakly developed gravitational circulation. When rediversion is completed, the net salinity in the lower Santee River can be expected to decrease drastically, which in turn is likely to terminate the lucrative oyster and clam fishery.  相似文献   

18.
To investigate to what extent episodic physical processes regulate nutrient availability and phytoplankton assemblages of the Mahon estuary (Minorca Island), we carried out an intensive field study during 2010–2011. During the study period, environmental conditions spanned from intense stratification to a continuous mixing and from lack of riverine inflow to intense runoff. Our data reveals a sequence of biogeochemical states of the estuary that result from the interplay between runoff, other non-periodic forcings (winds, sea level oscillations), and variations in water renewal. Seasonal runoff was revealed as a major driver of winter circulation and of the influx of inorganic nutrients, in particular nitrate. However, because of the combination between runoff and flushing time, the effects of floodwater events on phytoplankton are short-lived (days). Conversely, during summer, when freshwater influx declines, water renewal relies on pulsed atmospheric forcing that may be of local or remote origin. As depicted from the low nitrate concentrations (<1 μM) and enhanced ammonium (>1 μM), this change in circulation and external loads carries nutrient assimilation within the estuary head and forces the use of remnant nutrients through regenerating pathways to sustain an enhanced phytoplankton biomass at the lower estuary. Episodic variability represented between 52 and 65% of the annual chlorophyll variance. Despite the fact that episodic pulses represented intense departures from base biogeochemical state of the estuary, at time scale larger than weeks, the phytoplankton community composition and dynamics was largely regulated by the integrated effect of these episodes and other environmental drivers associated with seasonality rather than by individual storm events only. Our results suggest that even though the system presents good recovery capacity to individual storm episodes, it may be more vulnerable to increased nutrient fluxes during summer, as well as to changes in episode timing and frequency.  相似文献   

19.
Hydrographic patterns and chlorophyll concentrations in the Columbia River estuary were compared for spring and summer periods during 2004 through 2006. Riverine and oceanic sources of chlorophyll were evaluated at stations along a 27-km along-estuary transect in relation to time series of wind stress, river flow, and tidal stage. Patterns of chlorophyll concentration varied between seasons and years. In spring, the chlorophyll distribution was dominated by high concentrations from freshwater sources. Periods of increased stream flow limited riverine chlorophyll production. In summer, conversely, upwelling winds induced input of high-salinity water from the ocean to the estuary, and this water was often associated with relatively high chlorophyll concentrations. The frequency, duration, and intensity of upwelling events varied both seasonally and interannually, and this variation affected the timing and magnitude of coastally derived material imported to the estuary. The main source of chlorophyll thus varied from riverine in spring to coastal in summer. In both spring and summer seasons and among years, modulation of the spring/neap tidal cycle determined stratification, patterns of mixing, and the fate of (especially freshwater) phytoplankton. Spring tides had higher mixing and neap tides greater stratification, which affected the vertical distribution of chlorophyll. The Columbia River differs from the more tidally dominated coastal estuaries in the Pacific Northwest by its large riverine phytoplankton production and transfer of this biogenic material to the estuary and coastal ocean. However, all Pacific Northwest coastal estuaries investigated to date have exhibited advection of coastally derived chlorophyll during the upwelling season. This constitutes a fundamental difference between Pacific Northwest estuaries and systems not bounded by a coastal upwelling zone.  相似文献   

20.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号