首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
During the first year of the Northeast Pacific GLOBEC program we examined the spatial distributions of dissolved and particulate organic carbon and nitrogen in the surface waters off the Oregon and Washington coasts of North America. Eleven east–west transects were sampled from nearshore waters to 190 km offshore. Hydrographic data and the distribution of inorganic nutrients were used to characterize three distinct water sources: oligotrophic offshore water, the Columbia River plume, and the coastal upwelling region inshore of the California Current. Warm, high salinity offshore water had very low levels of inorganic nutrients, particulate organic carbon (POC) and dissolved organic carbon (DOC). Warm, low salinity water in the Columbia River plume was relatively low in nitrate, but showed a strong negative correlation between salinity and silicate. The river plume water had the highest levels of total organic carbon (TOC) (up to 180 μM) and DOC (up to 150 μM) observed anywhere in the sampling area. Cold, high salinity coastal waters had high nutrient levels, moderate to high levels of POC and particulate organic nitrogen (PON), and low to moderate levels of DOC and dissolved organic nitrogen (DON). Each of these regions has characteristic C:N ratios for particulate and dissolved organic material. The results are compared to concentrations and partitioning of particulate and dissolved organic carbon and nitrogen in other regions of the North Pacific and North Atlantic Oceans.  相似文献   

2.
The influence of the Columbia River plume on the distributions of nitrate and iron and their sources to coastal and shelf waters were examined. In contrast to other large estuaries, the Columbia River is a unique study area as it supplies very little nitrate (5 μM) and iron (14–30 nM) at salinities of 1–2 to coastal waters. Elevated nitrate and dissolved iron concentrations (as high as 20 μM and 20 nM) were observed, however, in the near field Columbia River plume at salinities of 20. Surface nitrate concentrations were higher than observed in the Columbia River itself and therefore must be added by entrainment of higher nitrate concentrations from subsurface coastal waters. Tidal flow was identified as an important factor in determining the chemical constituents of the Columbia River plume. During the rising flood tide, nitrate and iron were entrained into the plume waters resulting in concentrations of 15 μM and 6 nM, respectively. Conversely, during the ebb tide the concentrations of nitrate and total dissolved iron were reduced to 0.3–3 μM and 1–2 nM, respectively, with a concomitant increase in chlorophyll a concentrations. As these plume waters moved offshore the plume drifted directly westward, over a nitrate depleted water mass (< 0.2 μM). The plume water was also identified to move southwards and offshore during upwelling conditions and nitrate concentrations in this far field plume were also depleted. Iron concentrations in the near-field Columbia River plume are sufficient to meet the biological demand. However, due to the low nitrate in the Columbia River itself, nitrate in the plume is primarily dependent on mixing with nitrate rich, cold, high salinity subsurface waters. Without such an additional source the plume rapidly becomes nitrate limited.  相似文献   

3.
The spatial distributions of dissolved manganese and nutrients were examined in the Columbia River plume off Oregon and Washington during the summer of 2004 and 2005 as part of the River Influence on Shelf Ecosystems (RISE) program. Factors influencing the hydrochemical characteristics of the freshly formed and aged Columbia River plume were investigated. Hydrographic data and nutrient concentrations were used to delineate three distinct water sources for the Columbia River Plume: California Current surface water, coastal upwelled water, and Columbia River water. The warm, intermediate salinity, nutrient poor California Current water contains low levels of dissolved manganese (< 5 nM) and silicic acid (< 5 μM), and is depleted in nitrate. The cold, high salinity, nutrient rich, freshly upwelled water is highly variable (2–20 nM) in dissolved manganese and can be as high as  45 μM in silicic acid and  30 μM nitrate. The variable Columbia River has summer temperatures ranging from  13 to 24 °C, high silicic acid concentrations (ranging from  120 to 200 μM), and lower nitrate concentrations (ranging from  2 to 20 μM). During the summer, the concentrations of silicic acid and dissolved manganese can exceed 100 μM and 200 nM, respectively, in near-field Columbia River plumes. These values are markedly greater than those of surface coastal waters (even during upwelling conditions). As the plume advects and mixes, the concentrations of these two constituents remain relatively high within plume waters. The concentrations of dissolved manganese in the near-field plume vary with tidal amplitude, exhibiting much higher concentrations for a given salinity during spring tides than during neap tides. For example, the Columbia River plume at a salinity of 20 has a concentration of dissolved manganese of  240 nM during spring tides, as compared to only  60 nM during low amplitude tides. Silicic acid concentrations in the near-field plume remain relatively constant throughout the tidal month. Calculations indicate there is roughly an equivalent yearly delivery of dissolved manganese and silicic acid to the coastal waters off Oregon and Washington by upwelled waters and by the Columbia River plume.  相似文献   

4.
The distribution of dissolved (soluble and total) and particulate (leachable and total) aluminum was examined in the Columbia River and estuary, in near-field and far-field river plumes, and in adjacent coastal waters of Washington and Oregon during the River Influence on Shelf Ecosystems (RISE) cruise of May/June 2006. Dissolved and particulate aluminum (Al) concentrations were significantly greater in the river than in the coastal waters that mixed to form the plume. Dissolved Al concentrations in the Columbia River (∼80 nM) were low relative to other major rivers. Leachable and total particulate Al concentrations within the river reached concentrations greater than 1000 nM and 18,000 nM, respectively. Dissolved Al within the Columbia River estuary showed a significant removal (∼60%) at salinities between 0 and 10 with salt-induced flocculation of colloidal Al complexes and enhanced particle scavenging being probable explanations for aluminum removal. Dissolved and particulate Al concentrations were significantly greater in near-field plumes relative to surrounding coastal waters. As the plume advected from near-field to far-field away from the river mouth, dilution of the plume with lower dissolved Al surface waters as well as particle scavenging along the flow path appeared to be controlling dissolved Al distributions. Particle settling as well as dilution with lower particle-load waters led to observed decreases in particulate Al as the plume moved from near-field to far-field. However, the percent-leachable particulate aluminum in both near-field and far-field plumes was remarkably constant at ∼7%. Dissolved and particulate Al in a far-field plume over 100 km southwest of the Columbia River mouth were over an order-of-magnitude greater than surrounding waters, illustrating the importance of the Columbia River plume as a mechanism for transporting Al offshore. Aluminum could be used to trace the input of biologically-required elements such as iron into waters off the shelf.  相似文献   

5.
Systematic water sampling for characterization of chromophoric dissolved organic matter (CDOM) in the coastal South Atlantic Bight, was conducted as part of the long term Coastal Ocean Research and Monitoring Program (CORMP). Water samples were collected during a 3.5 year period, from October 2001 until March 2005, in the vicinity of the Cape Fear River (CFR) outlet and in adjacent Onslow Bay (OB). During this study there were two divergent hydrological and meteorological conditions in the CFR drainage area: a severe drought in 2002, followed by the very wet year of 2003. CDOM was characterized optically by the absorption coefficient at 350 nm, the spectral slope coefficient (S), and by Excitation Emission Matrix (EEM) fluorescence. Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra and six components were identified: three terrestrial humic-like components, one marine humic-like component and two protein-like components. Terrestrial humic-like components contributed most to dissolved organic matter (DOM) fluorescence in the low salinity plume of the CFR. The contribution of terrestrial humic-like components to DOM fluorescence in OB was much smaller than in the CFR plume area. Protein-like components contributed significantly to DOM fluorescence in the coastal ocean of OB and they dominated DOM fluorescence in the Gulf Stream waters. Hydrological conditions during the observation period significantly impacted both concentration and composition of CDOM found in the estuary and coastal ocean. In the CFR plume, there was an order of magnitude difference in CDOM absorption and fluorescence intensity between samples collected during the drought compared to the wet period. During the drought, CDOM in the CFR plume was composed of equal proportions of terrestrial humic-like components (ca. 60% of the total fluorescence intensity) with a significant contribution of proteinaceous substances (ca. 20% of the total fluorescence). During high river flow, CDOM was composed mostly of humic substances (nearly 75% of total fluorescence) with minor contributions by proteinaceous substances. The impact of changes in fresh water discharge patterns on CDOM concentration and composition was also observed in OB, though to a lesser degree.  相似文献   

6.
The use of dissolved Al as a tracer for oceanic water masses and atmospheric dust deposition of biologically important elements, such as iron, requires the quantitative assessment of its sources and sinks in seawater. Here, we address the relative importance of oceanic versus atmospheric inputs of Al, and the relationship with nutrient cycling, in a region of high biological productivity in coastal Antarctica. We investigate the concentrations of dissolved Al in seawater, sea ice, meteoric water and sediments collected from northern Marguerite Bay, off the West Antarctic Peninsula, from 2005 to 2006. Dissolved Al concentrations at 15 m water depth varied between 2 and 27 nM, showing a peak between two phytoplankton blooms. We find that, in this coastal setting, upwelling and incorporation of waters from below the surface mixed layer are responsible for this peak in dissolved Al as well as renewal of nutrients. This means that changes in the intensity and frequency of upwelling events may result in changes in biological production and carbon uptake. The waters below the mixed layer are most likely enriched in Al as a result of sea ice formation, either causing the injection of Al-rich brines or the resuspension of sediments and entrainment of pore fluids by brine cascades. Glacial, snow and sea ice melt contribute secondarily to the supply of Al to surface waters. Total particulate Al ranges from 93 to 2057 mg/g, and increases with meteoric water input towards the end of the summer, indicating glacial runoff is an important source of particulate Al. The (Al/Si)opal of sediment core top material is considerably higher than water column opal collected by sediment traps, indicative of a diagenetic overprint and incorporation of Al at the sediment–water interface. Opal that remains buried in the sediment could represent a significant sink of Al from seawater.  相似文献   

7.
根据1988-1991年河口锋面现场调查、上海市海岸带调查及历次标准断面调查资料对长江盐度场及盐度锋进行了分析,提出了由口门至外海纵向上存在着三级锋面现象:内侧锋面即长江河口锋为长江河口水与长江冲淡水的界面;羽状锋是长江口羽状流水与口外混合水的界面,它是长江口最主要的盐度锋面,也是长江口一个重要的生物地球化学带,对河口沉积过程及水下三角洲发育具有重要的影响。外侧锋面即海洋锋,是长江冲淡水的最外边缘。  相似文献   

8.
In the western equatorial Atlantic, 5 years of satellite Sea Surface Temperature (SST) measurements (1998–2002) from the cloud penetrating Tropical Rainfall Measuring Mission (TRMM) Microwave Imager reveal SST signatures of rings shedding from the North Brazil Current (NBC) as it separates from the South American coastline north of the Amazon River Delta and retroflects eastward between 5 and 10°N. By removing the spatial-mean SST from a 7° by 7° square of the nearly instantaneous measurements of each satellite pass, the 46.7 day aliasing period of the diurnal solar cycle is reduced, and seven to eight rings are observed per year with relatively warm (cold) SST anomalies of up to 1 °C in the first (second) half of the year. The sense of the SST anomalies carried by the NBC rings are determined by the contrast between the NBC SST and the regional SSTs that are influenced by the far-reaching seasonally varying Amazon River freshwater plume. Within a 1.6-year period, 12 of the SST anomalies are validated by in situ mooring array data confirming the predicted sense of the SST anomalies for each season. According to historical hydrographic data, during the first half of the year, the Amazon Plume is generally contained northwest along the coast, whereas during the second half of the year, the Amazon Plume surrounds the NBC retroflection on the west and the north, and from the surface down to 50 m, imposing a dramatic surface salinity contrast up to −4 and a surface temperature contrast up to +2 °C across the front. The surface layer characteristics of the rings shed from the NBC retroflection reveal varying influence of the Amazon Plume. Of the four rings surveyed in the NBCR experiment, Amazon Plume water is found only on the edges of three surface-intensified rings, whereas it completely covers the surface layer of the one thermocline-intensified ring. The maximum current cores of the NBC and retroflection are observed within tens-of-meters of the edges of the Amazon Plume. As the fresher and typically warmer surface waters associated with the Amazon Plume are buoyant relative to the saltier and typically colder surface waters carried by the NBC, the varying position of the Amazon Plume may seasonally influence the surface dynamics in the region.  相似文献   

9.
Water column samples have been collected in the outer channel of the Ferrol Ria (NW Spain) during four occasions over a tidal cycle. The objective was to study the exchange of dissolved and particulate Cd, Cu, Pb and Zn and particulate Al, Fe and Si between the ria and the adjacent coastal waters. This study provides the first extensive dataset on dissolved and particulate metal concentrations in the water column of a Galician ria. Typical concentrations of dissolved Cd (96 ± 31 pM), Cu (8 ± 4 nM), Pb (270 ± 170 pM) and Zn (21 ± 10 nM) were similar than in other European Atlantic shelf and coastal waters. The fraction of metals in the particulate phase followed the trend: Pb > Cu Zn > Cd. The outgoing water from the ria was enriched in dissolved and particulate Cu, Pb and Zn compared with incoming waters, whereas Cd concentrations were similar for both waters. The suspended particulate matter was composed of a mixture of marine and continental material. The latter end-member was found to arise from the metal-rich ria bed sediments, which is diluted by the dominant metal-poor marine end-member. The net output flux of Cu from the channel is balanced by the freshwater inputs to the ria, and the net Zn flux gave a positive output to coastal waters. For Pb, the net flux to the coastal waters is less than that input from the rivers, as a result of its particle reactivity and deposition in sediments. On the contrary, a net input flux of dissolved Cd from coastal waters was observed, highlighting the oceanic source of this metal in the Galician rias. Results from the budget calculations are in agreement with the differential geochemical behavior of these elements in coastal waters.  相似文献   

10.
The ‘dissolved’ iron (that passed through a 0·4-μm filter) varied nonconservatively with salinity in the Connecticut River estuary. However, the total iron appeared to be conservative. Measurements of Fe(II) and Fe(III) showed that oxidation of Fe(II) was not a factor in the decrease of ‘dissolved’ iron in the low salinity region. A solubility model and analyses based on different pore-size filters indicated that a substantial amount of the ‘dissolved’ iron in the low salinity region was colloidal iron. The coagulation of fine colloidal particles led to the non-conservative behavior of ‘dissolved’ iron during estuarine mixing, but it did not necessarily lead to removal of total iron from the waters. Particulate iron was 80–90% of the total iron and it covaried with the total suspended matter during mixing and sediment resuspension. The residence time of water in the Connecticut River estuary was too short to allow removal of iron from the water column within the estuary.  相似文献   

11.
Continuous CTD data from a series of recent cruises show that the distribution of the water mass characteristics in the central Benguela region from the Orange River mouth (28°38'S) to alvis Bay (22°57'S) is discontinuous in the central and intermediate waters at about the latitude of Lüderitz (26°40'S), Namibia. The central and intermediate water masses at the shelf edge and shelf break north of the Lüderitz upwelling cell have a high salinity relative to the potential temperature compared to similar waters south of the upwelling cell. It is shown that the feed waters for the wind-induced upwelling on the shelf to the north and south of the Lüderitz discontinuity are different in character and source. The distribution of the water masses shows that the shelf-edge poleward undercurrent provides low-oxygen water from different regions in the Atlantic Ocean to be upwelled onto the shelf. North of th Lüderitz upwelling cell, the central and intermediate waters come from the oxygen-depleted Angola Basin, whereas south of the discontinuity those waters are from the interior of the adjacent Cape Basin, which is less oxygen-deficient. This has implications for the dispersion of low-oxygen water and the triggering of anoxic events, and consequences for the biota on the shelf, including commercially important fish species.  相似文献   

12.
Vertical profiles of dissolved organic carbon (DOC) from eight hydrological stations in the Tyrrhenian Sea, Sardinia Channel and Algerian Sea, are reported. DOC exhibits concentrations ranging from 58 to 88 μM in surface water, 43–57 μM in the intermediate layer and 49–63 μM in deep waters. The assessment of the hydrological characteristics allows different water masses in the study area to be identified; moreover, different hydrological processes are observed in the Tyrrhenian and Algerian basins. DOC exhibits different values in the different water masses. The lowest DOC concentrations (43–46 μM) were found in the Tyrrhenian Levantine Intermediate Water (LIW). Correlations between DOC and apparent oxygen utilization (AOU), investigated within each water mass, exhibit different behaviors in the intermediate and deep waters, suggesting the occurrence of different processes of oxygen consumption in the different water masses.  相似文献   

13.
《Marine Chemistry》2001,73(1):21-36
As part of the ANTARES 3/F-JGOFS cruise, the distributions of dissolved iron and manganese were measured in October 1995 in the north–east wake of the Kerguelen archipelago (48°40′–49°40′S, 68°70′–70°50′E), an area that shows high phytoplankton biomass (CZCS and SeaWiFS data) in the middle of the High Nutrient Low Chlorophyll (HNLC) Southern Ocean. The study area (about 25,000 km2) comprised a branch of the Polar Front with Antarctic surface water (AASW) intruding northward, shouldering the shelf break of the Kerguelen Plateau. The coastal zone was clearly affected by material of lithogenic origin (riverine discharges, soil leaching by rain waters, aeolian inputs), as well as by inputs from the sediments (effluxes from the sediment–water interface, resuspension from the sediments), its near surface waters showing considerable enrichment in dissolved iron (5.3–12.6 nM) and in dissolved manganese (2.9–8.6 nM). The offshore waters, although less enriched in trace-metals, were also affected by trace-metal inputs from coastal and continental shelf origin. Dissolved iron and manganese concentrations in these waters were 0.46–0.71 and 0.68–1.3 nM, i.e. far over typical antarctic open ocean surface water concentrations of 0.16 nM for iron [Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature, 345: 156–158.] and around 0.1 nM for manganese [Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature, 345: 156–158; Sedwick, P.N., Edwards, P.R., Mackey, D.J., Griffiths, F.B., Parslow, J.S., 1997. Iron and manganese in surface waters of the Australian subantarctic region. Deep-Sea Res., 44: 1239–1253.]. The dissolved iron enrichment in coastal waters of the Kerguelen Islands is much more important (about 10 times for dissolved iron) than for the Galapagos Islands, another oasis in the HNLC Equatorial oceanic system, where the concentration increase in dissolved iron in the surface waters around the islands is mostly driven by upwelling of the Equatorial Under Current (EUC) as it reaches the Galapagos Platform.  相似文献   

14.
A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water quality of Hong Kong waters due to their transport away from Hong Kong; (3) during the winter when a northeasterly monsoon prevails, all pollutants released from the eight river gates will be laterally transported seaward inside the estuary and transport westward in the coastal waters along the river plume frontal zone. However, pollutants released from the surface layer of offshore stations near or east of the Dangan Channel will be carried into the coastal waters of Hong Kong by the landward component of the westward coastal current driven by the winter northeasterly monsoon. But the pollutants from the bottom layer of the offshore stations will be carried away from the offshore by the bottom flow driven by the northeasterly monsoon. This implies that only surface-released matter from offshore stations will affect the water quality of the coastal waters around Hong Kong during the winter when a northeasterly monsoon prevails.  相似文献   

15.
A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water quality of Hong Kong waters due to their transport away from Hong Kong; (3) during the winter when a northeasterly monsoon prevails, all pollutants released from the eight river gates will be laterally transported seaward inside the estuary and transport westward in the coastal waters along the river plume frontal zone. However, pollutants released from the surface layer of offshore stations near or east of the Dangan Channel will be carried into the coastal waters of Hong Kong by the landward component of the westward coastal current driven by the winter northeasterly monsoon. But the pollutants from the bottom layer of the offshore stations will be carried away from the offshore by the bottom flow driven by the northeasterly monsoon. This implies that only surface-released matter from offshore stations will affect the water quality of the coastal waters around Hong Kong during the winter when a northeasterly monsoon prevails.  相似文献   

16.
Data from the R/V Mirai cruise (May–June 2000) have been examined to discover how mesoscale processes associated with eddy dynamics direct affect the water masses, the distributions and the vertical fluxes of the dissolved oxygen, nutrients and dissolved inorganic carbon in the western subarctic Pacific. Using maps of the temperature, salinity, dissolved oxygen, nutrients, chlorophyll and sea-air pCO2 difference we show that the boundaries of the anticyclone eddies in the study region were composed of high productivity coastal Oyashio water. The coastal waters were wrapped around the anticyclone eddies (thus creating a high productivity belt) and intruded inside of them. Using SeaWifs data we demonstrate that temporal variations in the position and the strength of anticyclone eddies advected the Kuril island coastal high productivity waters to the pelagic part, resulting in temporal variations of the chlorophyll in the Oyashio region. Computed vertical fluxes of the dissolved oxygen (DO), inorganic carbon (DIC) and silicate show that the anticylonic eddies in the Kuroshio-Oyashio Zone are characterized by enhanced vertical fluxes of the DO and DIC between the upper (σθ = 26.7–27.0) and lower (σθ = 27.1–27.5) intermediate layer, probably due to the intrusions of the Oyashio waters into the eddies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Extractable organic copper using C18 Sep-Pak cartridges was investigated in seawater after laboratory experiment showed that the (C18 Sep-Pak) cartridges were reliable, in open and coastal waters with normal levels of dissolved organic carbon, for the separation of a specific fraction of organo-copper complexes.Given that the Sep-Pak cartridges retain the hydrophobic fraction of the dissolved organic matter, this extraction technique was applied for studying the characteristics of this particular hydrophobic dissolved organic copper fraction (hDOCu) in the north-western Mediterranean waters. Surface distribution of hDOC is influenced by organic matter input from the river Rhone and its estuary as well as the physical processes affecting the primary productivity such as coastal upwelling. By correlating hDOCu concentrations with total dissolved copper and other hydrochemical data such as salinity and dissolved organic carbon, it was possible to examine the behaviour of hDOCu in the water masses of different sources and ages.Marine organic matter has been shown to have high complexing capacity. Productive superficial and intermediate waters as well as deep waters showed relatively high and comparable complexing capacity indicating that old organic matter may have strong complexing sites.  相似文献   

18.
《Oceanologica Acta》1998,21(2):209-221
Coastal waters are generally a product of mixing between continental and oceanic originated water masses. Near river mouth areas, as in the Gironde estuary, oceanic waters are modified by the influence of freshwater discharge that introduces suspended and dissolved substances, including pollutants. Within PNOC (Programme National d'Oceanographie Côtière) our objective is to determine the extent of the influence of the Gironde estuary on to the Aquitanian continental shelf. Several cruises for collecting hydrological data have been carried out in this area. The data of every cruise were coupled with a NOAA-11 satellite passage. The recorded images have been analysed and were compared with the results given by a 3D mathematical model. The interaction among different dynamical factors (density, wind-driven and tidal circulation) controls the mixing and the transport of low salinity waters.  相似文献   

19.
河口砷(As)的地球化学行为的研究是近几年才开始的。Waslenchuk和Windon在研究美国东南部一些河口砷的行为时,认为砷在河口的行为是保守的。Howard在调查英格兰南部的Beaulieu河口砷的行为时,发现有转移的迹象。黄河口及其近岸海域溶解砷的调查目的是想了解砷在黄河口的行为及其分布特征。  相似文献   

20.
This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004–2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号